論文の概要: Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-OASIS
- arxiv url: http://arxiv.org/abs/2411.19655v1
- Date: Fri, 29 Nov 2024 12:21:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:20:47.281558
- Title: Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-OASIS
- Title(参考訳): 真実とミラージュ : LLM-OASISによるエンドツーエンドのファクチュアリティ評価に向けて
- Authors: Alessandro Scirè, Andrei Stefan Bejgu, Simone Tedeschi, Karim Ghonim, Federico Martelli, Roberto Navigli,
- Abstract要約: LLM-Oasisは、エンド・ツー・エンドの事実性評価をトレーニングするための最大のリソースである。
ウィキペディアからクレームを抽出し、これらのクレームのサブセットを偽造し、事実と非事実のテキストのペアを生成することで構築される。
次に、データセットの品質を検証し、事実性評価システムのための金の標準テストセットを作成するために、人間のアノテータに依存します。
- 参考スコア(独自算出の注目度): 78.07225438556203
- License:
- Abstract: After the introduction of Large Language Models (LLMs), there have been substantial improvements in the performance of Natural Language Generation (NLG) tasks, including Text Summarization and Machine Translation. However, LLMs still produce outputs containing hallucinations, that is, content not grounded in factual information. Therefore, developing methods to assess the factuality of LLMs has become urgent. Indeed, resources for factuality evaluation have recently emerged. Although challenging, these resources face one or more of the following limitations: (i) they are tailored to a specific task or domain; (ii) they are limited in size, thereby preventing the training of new factuality evaluators; (iii) they are designed for simpler verification tasks, such as claim verification. To address these issues, we introduce LLM-Oasis, to the best of our knowledge the largest resource for training end-to-end factuality evaluators. LLM-Oasis is constructed by extracting claims from Wikipedia, falsifying a subset of these claims, and generating pairs of factual and unfactual texts. We then rely on human annotators to both validate the quality of our dataset and to create a gold standard test set for benchmarking factuality evaluation systems. Our experiments demonstrate that LLM-Oasis presents a significant challenge for state-of-the-art LLMs, with GPT-4o achieving up to 60% accuracy in our proposed end-to-end factuality evaluation task, highlighting its potential to drive future research in the field.
- Abstract(参考訳): 大規模言語モデル(LLM)の導入後,テキスト要約や機械翻訳など,自然言語生成(NLG)タスクのパフォーマンスが大幅に向上した。
しかし、LLMはいまだに幻覚、すなわち事実情報を根拠にしていない内容を含むアウトプットを生成している。
そのため,LSMの事実性を評価する手法の開発が急務となっている。
実際、事実性評価のためのリソースが最近出現した。
課題はあるが、これらのリソースは以下の制限の1つ以上の制約に直面している。
一 特定の業務又は領域に特化しているもの
(二 規模が限られているため、新しい事実性評価者の訓練を妨げない。)
(iii)クレーム検証などの簡易な検証タスクのために設計されている。
これらの問題に対処するため、私たちはLLM-Oasisを紹介します。
LLM-OasisはWikipediaからクレームを抽出し、これらのクレームのサブセットを偽造し、事実と非事実のテキストのペアを生成することで構築されている。
次に、データセットの品質を検証し、事実性評価システムのベンチマークのためのゴールドスタンダードテストセットを作成するために、人間のアノテータに依存します。
GPT-4oは,提案したエンドツーエンドの事実性評価タスクにおいて最大60%の精度を達成し,この分野における今後の研究を推進する可能性を強調した。
関連論文リスト
- A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - UFO: a Unified and Flexible Framework for Evaluating Factuality of Large
Language Models [73.73303148524398]
大規模言語モデル(LLM)は、人間の知識との整合性に欠けるテキストを生成し、事実的不正確さやテキスト・ハロシン化をもたらす。
プラグアンドプレイのファクトソースに対する事実を検証するための,LLMに基づく統一的かつ柔軟な評価フレームワークである textttUFO を提案する。
論文 参考訳(メタデータ) (2024-02-22T16:45:32Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z) - Are Large Language Models Reliable Judges? A Study on the Factuality
Evaluation Capabilities of LLMs [8.526956860672698]
大きな言語モデル(LLM)は、その顕著な能力のために注目を集めている。
本研究では,テキスト生成モデルにより生成された要約における事実整合性の信頼性評価としてのLCMの可能性について検討する。
論文 参考訳(メタデータ) (2023-11-01T17:42:45Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
本稿では,Felmと呼ばれる大規模言語モデルのファクチュアリティ評価のためのベンチマークを紹介する。
我々は,大規模言語モデルから生成された応答を収集し,微粒な方法で事実ラベルを注釈付けする。
その結果,検索は事実性評価に役立つが,現在のLCMは事実の誤りを忠実に検出するには不十分であることがわかった。
論文 参考訳(メタデータ) (2023-10-01T17:37:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
大規模言語モデル(LLM)は優れた性能と幅広い実用性を持っている。
既存の評価タスクは、現実世界のシナリオにおける幅広いアプリケーションに追いつくのは難しい。
LLMの4つのコア能力は、推論、知識、信頼性、安全性などである。
この能力アーキテクチャの下では、類似したタスクを組み合わせて対応する能力を反映し、新しいタスクをシステムに簡単に追加することができる。
論文 参考訳(メタデータ) (2023-08-15T17:40:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。