論文の概要: RepEval: Effective Text Evaluation with LLM Representation
- arxiv url: http://arxiv.org/abs/2404.19563v2
- Date: Mon, 28 Oct 2024 04:27:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:14:49.046059
- Title: RepEval: Effective Text Evaluation with LLM Representation
- Title(参考訳): RepEval: LLM表現による効果的なテキスト評価
- Authors: Shuqian Sheng, Yi Xu, Tianhang Zhang, Zanwei Shen, Luoyi Fu, Jiaxin Ding, Lei Zhou, Xiaoying Gan, Xinbing Wang, Chenghu Zhou,
- Abstract要約: RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
- 参考スコア(独自算出の注目度): 55.26340302485898
- License:
- Abstract: The era of Large Language Models (LLMs) raises new demands for automatic evaluation metrics, which should be adaptable to various application scenarios while maintaining low cost and effectiveness. Traditional metrics for automatic text evaluation are often tailored to specific scenarios, while LLM-based evaluation metrics are costly, requiring fine-tuning or rely heavily on the generation capabilities of LLMs. Besides, previous LLM-based metrics ignore the fact that, within the space of LLM representations, there exist direction vectors that indicate the estimation of text quality. To this end, we introduce RepEval, a metric that leverages the projection of LLM representations for evaluation. Through simple prompt modifications, RepEval can easily transition to various tasks, requiring only minimal sample pairs for direction vector construction. Results on fourteen datasets across two evaluation tasks demonstrate the high effectiveness of our method, which exhibits a higher correlation with human judgments than previous methods, even in complex evaluation scenarios involving pair-wise selection under nuanced aspects. Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
- Abstract(参考訳): LLM(Large Language Models)の時代は、さまざまなアプリケーションシナリオに適応し、低コストと有効性を保ちながら、自動評価メトリクスに対する新たな要求を提起する。
従来のテキスト自動評価のメトリクスは特定のシナリオに合わせて調整されることが多いが、LLMベースの評価メトリクスはコストがかかり、微調整が必要か、LLMの生成能力に大きく依存する。
さらに、従来のLLMベースのメトリクスは、LLM表現の空間内に、テキスト品質の推定を示す方向ベクトルが存在するという事実を無視している。
この目的のために,LLM表現の投影を利用した評価指標RepEvalを導入する。
簡単なプロンプト修正によって、RepEvalは様々なタスクに容易に移行でき、方向ベクトルの構成には最小限のサンプルペアしか必要としない。
2つの評価課題にまたがる14のデータセットの結果,従来の方法よりも人間の判断と高い相関性を示す手法の有効性が示された。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
関連論文リスト
- 100 instances is all you need: predicting the success of a new LLM on unseen data by testing on a few instances [11.783547185760007]
従来試験されていたLCMの評価結果を用いて,新たなLCMの性能予測に必要な評価回数を削減する。
既存の推論データセットの集合であるHELM-LiteとKidsOfReasoningについて実証的研究を行った。
論文 参考訳(メタデータ) (2024-09-05T14:19:45Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions [2.5179515260542544]
大規模言語モデル (LLM) は、テキスト生成、質問応答、テキスト要約における汎用的な応用のために、学界や業界全体で大きな注目を集めている。
パフォーマンスを定量化するためには、既存のメトリクスを包括的に把握することが重要です。
本稿では,メトリクスの観点からLLM評価を包括的に調査し,現在使用されているメトリクスの選択と解釈について考察する。
論文 参考訳(メタデータ) (2024-04-14T03:54:00Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
本稿では,セマンティック・オーバーラップ・サマリゼーション(SOS)タスクにおいて,Large Language Models (LLM) を包括的に評価する。
本稿では, ROUGE, BERTscore, SEM-F1$などの定評ある指標を, 2種類の代替物語のデータセット上で報告する。
論文 参考訳(メタデータ) (2024-02-26T20:33:50Z) - GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data [3.08543976986593]
MLLM(Multimodal Large Language Models)は通常、高価な注釈付きマルチモーダルベンチマークを用いて評価される。
本稿では,新しいアノテーションのない評価手法であるGenCeptionの概要と検証を行う。
モダリティ間のセマンティック・コヒーレンスを測定するために一元データのみを必要とし、逆にMLLMの幻覚傾向を評価する。
論文 参考訳(メタデータ) (2024-02-22T21:22:04Z) - State of What Art? A Call for Multi-Prompt LLM Evaluation [28.307860675006545]
我々は650万インスタンスにわたる単発評価により得られた結果の脆さを包括的に分析した。
解析のロバスト性を改善するために,多様なプロンプトのセットを用いてLSMを評価することを提案する。
論文 参考訳(メタデータ) (2023-12-31T22:21:36Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
マルチモーダル言語モデル(MLLM)は、マルチモーダルタスクを実行するために強力なLLMに依存している。
本稿では,MLLM 評価ベンチマーク MME について述べる。
知覚能力と認知能力の両方を合計14のサブタスクで測定する。
論文 参考訳(メタデータ) (2023-06-23T09:22:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。