論文の概要: RepEval: Effective Text Evaluation with LLM Representation
- arxiv url: http://arxiv.org/abs/2404.19563v2
- Date: Mon, 28 Oct 2024 04:27:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:14:49.046059
- Title: RepEval: Effective Text Evaluation with LLM Representation
- Title(参考訳): RepEval: LLM表現による効果的なテキスト評価
- Authors: Shuqian Sheng, Yi Xu, Tianhang Zhang, Zanwei Shen, Luoyi Fu, Jiaxin Ding, Lei Zhou, Xiaoying Gan, Xinbing Wang, Chenghu Zhou,
- Abstract要約: RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
- 参考スコア(独自算出の注目度): 55.26340302485898
- License:
- Abstract: The era of Large Language Models (LLMs) raises new demands for automatic evaluation metrics, which should be adaptable to various application scenarios while maintaining low cost and effectiveness. Traditional metrics for automatic text evaluation are often tailored to specific scenarios, while LLM-based evaluation metrics are costly, requiring fine-tuning or rely heavily on the generation capabilities of LLMs. Besides, previous LLM-based metrics ignore the fact that, within the space of LLM representations, there exist direction vectors that indicate the estimation of text quality. To this end, we introduce RepEval, a metric that leverages the projection of LLM representations for evaluation. Through simple prompt modifications, RepEval can easily transition to various tasks, requiring only minimal sample pairs for direction vector construction. Results on fourteen datasets across two evaluation tasks demonstrate the high effectiveness of our method, which exhibits a higher correlation with human judgments than previous methods, even in complex evaluation scenarios involving pair-wise selection under nuanced aspects. Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
- Abstract(参考訳): LLM(Large Language Models)の時代は、さまざまなアプリケーションシナリオに適応し、低コストと有効性を保ちながら、自動評価メトリクスに対する新たな要求を提起する。
従来のテキスト自動評価のメトリクスは特定のシナリオに合わせて調整されることが多いが、LLMベースの評価メトリクスはコストがかかり、微調整が必要か、LLMの生成能力に大きく依存する。
さらに、従来のLLMベースのメトリクスは、LLM表現の空間内に、テキスト品質の推定を示す方向ベクトルが存在するという事実を無視している。
この目的のために,LLM表現の投影を利用した評価指標RepEvalを導入する。
簡単なプロンプト修正によって、RepEvalは様々なタスクに容易に移行でき、方向ベクトルの構成には最小限のサンプルペアしか必要としない。
2つの評価課題にまたがる14のデータセットの結果,従来の方法よりも人間の判断と高い相関性を示す手法の有効性が示された。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions [2.5179515260542544]
大規模言語モデル (LLM) は、テキスト生成、質問応答、テキスト要約における汎用的な応用のために、学界や業界全体で大きな注目を集めている。
パフォーマンスを定量化するためには、既存のメトリクスを包括的に把握することが重要です。
本稿では,メトリクスの観点からLLM評価を包括的に調査し,現在使用されているメトリクスの選択と解釈について考察する。
論文 参考訳(メタデータ) (2024-04-14T03:54:00Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
本稿では,セマンティック・オーバーラップ・サマリゼーション(SOS)タスクにおいて,Large Language Models (LLM) を包括的に評価する。
本稿では, ROUGE, BERTscore, SEM-F1$などの定評ある指標を, 2種類の代替物語のデータセット上で報告する。
論文 参考訳(メタデータ) (2024-02-26T20:33:50Z) - The Eval4NLP 2023 Shared Task on Prompting Large Language Models as
Explainable Metrics [36.52897053496835]
生成型大規模言語モデル (LLM) は、タスクに関連する最小あるいは全くの例でタスクを解く顕著な能力を示している。
Eval4NLP 2023共有タスクを導入し、参加者に対して機械翻訳(MT)と要約評価のためのプロンプトとスコア抽出について検討する。
本稿では,参加者のアプローチの概要を述べるとともに,MTと要約データセットの3つの言語対にまたがる新しい参照なしテストセットについて評価する。
論文 参考訳(メタデータ) (2023-10-30T17:55:08Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - ReForm-Eval: Evaluating Large Vision Language Models via Unified
Re-Formulation of Task-Oriented Benchmarks [76.25209974199274]
大規模視覚言語モデル(LVLM)は、視覚信号を知覚し、視覚的根拠を持つ推論を行う驚くべき能力を示す。
当社のベンチマークおよび評価フレームワークは,LVLMの開発を進めるための基盤としてオープンソース化される予定である。
論文 参考訳(メタデータ) (2023-10-04T04:07:37Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
大規模言語モデル(LLM)は優れた性能と幅広い実用性を持っている。
既存の評価タスクは、現実世界のシナリオにおける幅広いアプリケーションに追いつくのは難しい。
LLMの4つのコア能力は、推論、知識、信頼性、安全性などである。
この能力アーキテクチャの下では、類似したタスクを組み合わせて対応する能力を反映し、新しいタスクをシステムに簡単に追加することができる。
論文 参考訳(メタデータ) (2023-08-15T17:40:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。