論文の概要: INCLUDE: Evaluating Multilingual Language Understanding with Regional Knowledge
- arxiv url: http://arxiv.org/abs/2411.19799v1
- Date: Fri, 29 Nov 2024 16:03:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:20:45.388411
- Title: INCLUDE: Evaluating Multilingual Language Understanding with Regional Knowledge
- Title(参考訳): INCLUDE:地域知識を用いた多言語言語理解の評価
- Authors: Angelika Romanou, Negar Foroutan, Anna Sotnikova, Zeming Chen, Sree Harsha Nelaturu, Shivalika Singh, Rishabh Maheshwary, Micol Altomare, Mohamed A. Haggag, Snegha A, Alfonso Amayuelas, Azril Hafizi Amirudin, Viraat Aryabumi, Danylo Boiko, Michael Chang, Jenny Chim, Gal Cohen, Aditya Kumar Dalmia, Abraham Diress, Sharad Duwal, Daniil Dzenhaliou, Daniel Fernando Erazo Florez, Fabian Farestam, Joseph Marvin Imperial, Shayekh Bin Islam, Perttu Isotalo, Maral Jabbarishiviari, Börje F. Karlsson, Eldar Khalilov, Christopher Klamm, Fajri Koto, Dominik Krzemiński, Gabriel Adriano de Melo, Syrielle Montariol, Yiyang Nan, Joel Niklaus, Jekaterina Novikova, Johan Samir Obando Ceron, Debjit Paul, Esther Ploeger, Jebish Purbey, Swati Rajwal, Selvan Sunitha Ravi, Sara Rydell, Roshan Santhosh, Drishti Sharma, Marjana Prifti Skenduli, Arshia Soltani Moakhar, Bardia Soltani Moakhar, Ran Tamir, Ayush Kumar Tarun, Azmine Toushik Wasi, Thenuka Ovin Weerasinghe, Serhan Yilmaz, Mike Zhang, Imanol Schlag, Marzieh Fadaee, Sara Hooker, Antoine Bosselut,
- Abstract要約: 機能的大規模言語モデル(LLM)の開発は、英語以外の言語における高品質な評価資源の欠如によってボトルネックとなっている。
本研究では,各地域における多言語LLMの能力を評価するため,現地試験資料から197,243対のQAペアの評価スイートを構築した。
- 参考スコア(独自算出の注目度): 36.234295907476515
- License:
- Abstract: The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (\ie, multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. Our novel resource, INCLUDE, is a comprehensive knowledge- and reasoning-centric benchmark across 44 written languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed.
- Abstract(参考訳): 言語間の大きな言語モデル(LLM)の性能差は、多くの地域での効果的な展開を妨げ、多くのコミュニティにおける生成AIツールの経済的および社会的価値を阻害する。
しかし、多くの言語における関数型LLM(\ie, multilingual LLM)の開発は、英語以外の言語における高品質な評価資源の欠如によってボトルネックとなっている。
さらに、多言語ベンチマーク構築における現在の実践は、多言語システムを使用する環境の地域的・文化的知識を無視して、英語のリソースを翻訳することが多い。
本研究では,各地域における多言語LLMの能力を評価するため,現地試験資料から197,243対のQAペアの評価スイートを構築した。
我々の新しいリソースであるINCLUDEは、44の言語にまたがる総合的な知識と推論中心のベンチマークであり、実際にデプロイされる言語環境において、多言語LLMのパフォーマンスを評価する。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Teaching LLMs to Abstain across Languages via Multilingual Feedback [40.84205285309612]
多言語フィードバックは,多様な言語,文化,コミュニティ間の知識ギャップを識別する上で有効であることを示す。
大規模な実験により、多言語フィードバックアプローチは、様々な強いベースラインよりも優れていることが示された。
さらに分析したところ、多言語フィードバックは多言語話者に役立てるための効果的かつ公平な回避戦略であることがわかった。
論文 参考訳(メタデータ) (2024-06-22T21:59:12Z) - Quantifying Multilingual Performance of Large Language Models Across Languages [48.40607157158246]
大規模言語モデル(LLM)は、英語、ドイツ語、フランス語のような高リソース言語で、低リソース言語の能力は依然として不十分である。
内部表現を用いたLLM性能に基づいて,言語をベンチマークし,ランク付けするための固有測度であるLanguage Rankerを提案する。
分析の結果,高リソース言語は英語との類似度が高く,性能が優れ,低リソース言語は類似度が低いことがわかった。
論文 参考訳(メタデータ) (2024-04-17T16:53:16Z) - OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large
Language Models [59.54423478596468]
OMGEvalは、オープンソースの多言語生成テストセットであり、異なる言語におけるLLMの能力を評価することができる。
各言語について、OMGEvalは804のオープンエンド質問を提供し、LLMの重要な機能を幅広くカバーしている。
具体的には、OMGEvalの現在のバージョンには5つの言語(Zh, Ru, Fr, Es, Ar)が含まれている。
論文 参考訳(メタデータ) (2024-02-21T04:42:41Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
我々は、事前訓練された大規模言語モデル(LLM)が、アンダーリソース言語のパフォーマンスギャップを埋める可能性について検討する。
LLM は,低リソース言語における技術の現状を,かなりのマージンで容易に設定できることがわかった。
全ての言語について、人間の評価は最高のシステムで人間と同等のパフォーマンスを示すが、BLEUのスコアは英語に比べて崩壊する。
論文 参考訳(メタデータ) (2024-02-19T16:29:40Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。
ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。
評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
論文 参考訳(メタデータ) (2024-01-04T11:27:48Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。