Artificial intelligence contribution to translation industry: looking back and forward
- URL: http://arxiv.org/abs/2411.19855v2
- Date: Mon, 02 Dec 2024 16:39:26 GMT
- Title: Artificial intelligence contribution to translation industry: looking back and forward
- Authors: Mohammed Q. Shormani,
- Abstract summary: 13220 articles were retrieved from three sources, namely WoS, Scopus, and Lens.
The findings reveal that in the past AI contribution to translation industry was not rigorous, resulting in rule-based machine translation and statistical machine translation whose output was not satisfactory.
- Score: 0.0
- License:
- Abstract: This study provides a comprehensive analysis of artificial intelligence (AI) contribution to translation industry (ACTI) research, synthesizing it over forty-one years from 1980-2024. 13220 articles were retrieved from three sources, namely WoS, Scopus, and Lens. We provided two types of analysis, viz., scientometric and thematic, focusing on cluster, subject categories, keywords, burstness, centrality and research centers as for the former. For the latter, we thematically review 18 articles, selected purposefully from the articles involved, centering on purpose, approach, findings, and contribution to ACTI future directions. The findings reveal that in the past AI contribution to translation industry was not rigorous, resulting in rule-based machine translation and statistical machine translation whose output was not satisfactory. However, the more AI develops, the more machine translation develops, incorporating Neural Networking Algorithms and (Deep) Language Learning Models like ChatGPT whose translation output has developed considerably. However, much rigorous research is still needed to overcome several problems encountering translation industry, specifically concerning low-source languages, multi-dialectical and free word order languages, and cultural and religious registers.
Related papers
- A Multilingual Sentiment Lexicon for Low-Resource Language Translation using Large Languages Models and Explainable AI [0.0]
South Africa and the DRC present a complex linguistic landscape with languages such as Zulu, Sepedi, Afrikaans, French, English, and Tshiluba.
This study develops a multilingual lexicon designed for French and Tshiluba, now expanded to include translations in English, Afrikaans, Sepedi, and Zulu.
A comprehensive testing corpus is created to support translation and sentiment analysis tasks, with machine learning models trained to predict sentiment.
arXiv Detail & Related papers (2024-11-06T23:41:18Z) - Morphosyntactic Analysis for CHILDES [1.6258710071587594]
We have been transcribing and linking data for the CHILDES database.
We have applied the UD (Universal Dependencies) framework to provide a consistent and comparable morphosyntactic analysis for 27 languages.
arXiv Detail & Related papers (2024-07-17T08:11:24Z) - Distinguishing Translations by Human, NMT, and ChatGPT: A Linguistic and Statistical Approach [1.6982207802596105]
This study investigates three key questions: (1) the distinguishability of ChatGPT-generated translations from NMT and human translation (HT), (2) the linguistic characteristics of each translation type, and (3) the degree of resemblance between ChatGPT-produced translations and HT or NMT.
arXiv Detail & Related papers (2023-12-17T15:56:05Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
We analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages.
We derive three major findings from our analysis.
arXiv Detail & Related papers (2023-10-31T13:50:55Z) - Recent Advances in Direct Speech-to-text Translation [58.692782919570845]
We categorize the existing research work into three directions based on the main challenges -- modeling burden, data scarcity, and application issues.
For the challenge of data scarcity, recent work resorts to many sophisticated techniques, such as data augmentation, pre-training, knowledge distillation, and multilingual modeling.
We analyze and summarize the application issues, which include real-time, segmentation, named entity, gender bias, and code-switching.
arXiv Detail & Related papers (2023-06-20T16:14:27Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios.
This work proposes the MAPS framework, which stands for Multi-Aspect Prompting and Selection.
We employ a selection mechanism based on quality estimation to filter out noisy and unhelpful knowledge.
arXiv Detail & Related papers (2023-05-06T19:03:12Z) - Machine Translation for Accessible Multi-Language Text Analysis [1.5484595752241124]
We show that English-trained measures computed after translation to English have adequate-to-excellent accuracy.
We show this for three major analytics -- sentiment analysis, topic analysis, and word embeddings -- over 16 languages.
arXiv Detail & Related papers (2023-01-20T04:11:38Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
We create datasets and models aimed at narrowing the performance gap between low and high-resource languages.
We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks.
Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art.
arXiv Detail & Related papers (2022-07-11T07:33:36Z) - Machine Translation from Signed to Spoken Languages: State of the Art
and Challenges [9.292669129832605]
We give a high-level introduction to sign language linguistics and machine translation.
We find that significant advances have been made on the shoulders of spoken language machine translation research.
We advocate for interdisciplinary research and to base future research on linguistic analysis of sign languages.
arXiv Detail & Related papers (2022-02-07T11:54:07Z) - Crossing the Conversational Chasm: A Primer on Multilingual
Task-Oriented Dialogue Systems [51.328224222640614]
Current state-of-the-art ToD models based on large pretrained neural language models are data hungry.
Data acquisition for ToD use cases is expensive and tedious.
arXiv Detail & Related papers (2021-04-17T15:19:56Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.