論文の概要: Cross-Domain Recommendation Meets Large Language Models
- arxiv url: http://arxiv.org/abs/2411.19862v1
- Date: Fri, 29 Nov 2024 17:25:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:18:12.615788
- Title: Cross-Domain Recommendation Meets Large Language Models
- Title(参考訳): Cross-Domain Recommendationが大規模言語モデルに対応
- Authors: Ajay Krishna Vajjala, Dipak Meher, Ziwei Zhu, David S. Rosenblum,
- Abstract要約: クロスドメインレコメンデーション(CDR)がコールドスタート問題に対する有望な解決策として登場した。
既存のCDRモデルは複雑なニューラルネットワーク、大規模なデータセット、重要な計算資源に依存している。
本研究では,大規模言語モデル(LLM)の推論機能を活用し,その性能をCDR領域で検証する。
- 参考スコア(独自算出の注目度): 3.1519384727993582
- License:
- Abstract: Cross-domain recommendation (CDR) has emerged as a promising solution to the cold-start problem, faced by single-domain recommender systems. However, existing CDR models rely on complex neural architectures, large datasets, and significant computational resources, making them less effective in data-scarce scenarios or when simplicity is crucial. In this work, we leverage the reasoning capabilities of large language models (LLMs) and explore their performance in the CDR domain across multiple domain pairs. We introduce two novel prompt designs tailored for CDR and demonstrate that LLMs, when prompted effectively, outperform state-of-the-art CDR baselines across various metrics and domain combinations in the rating prediction and ranking tasks. This work bridges the gap between LLMs and recommendation systems, showcasing their potential as effective cross-domain recommenders.
- Abstract(参考訳): クロスドメインレコメンデーション(CDR)は、シングルドメインレコメンデーションシステムに直面するコールドスタート問題の有望な解決策として登場した。
しかし、既存のCDRモデルは複雑なニューラルネットワークアーキテクチャ、大規模なデータセット、重要な計算資源に依存しているため、データスカースシナリオや単純性が不可欠である場合の効率は低下する。
本研究では,大規模言語モデル(LLM)の推論機能を活用し,複数のドメインペアをまたいだCDRドメインにおけるそれらの性能について検討する。
我々はCDRに適した2つの新しいプロンプト設計を導入し、LLMが評価予測とランキングタスクにおいて、様々な指標とドメインの組み合わせにおいて、最先端のCDRベースラインより優れていることを示す。
この研究はLLMとレコメンデーションシステムのギャップを埋め、効果的なクロスドメインレコメンデーションとしての可能性を示している。
関連論文リスト
- A Unified Framework for Cross-Domain Recommendation [15.987800946057343]
クロスドメイン勧告は有望な方法論として現れます。
我々は、以前のSOTAモデルであるUniCDRを、UniCDR+という名前の5つの異なる側面で拡張する。
我々の作業はクアイシュ州リビング・ルーム・RecSysで成功裏に展開されました。
論文 参考訳(メタデータ) (2024-09-06T18:10:42Z) - Sharpness-Aware Cross-Domain Recommendation to Cold-Start Users [29.229433535780153]
CDR(Cross-Domain Recommendation)は、推薦システムにおけるコールドスタート問題を解決するために、トランスファーラーニングにインスパイアされた有望なパラダイムである。
シャープネス対応CDR(SCDR)と呼ばれる新しいCDR法を提案する。
論文 参考訳(メタデータ) (2024-08-04T05:07:58Z) - Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation [7.247438542823219]
CDR(Cross-Domain Recommendation)は、レコメンデーションシステムにおけるデータ空間の問題に対する重要な解決策である。
本稿では,HGDR (Heterogeneous Graph-based Framework with Disentangled Representations Learning)を提案する。
実世界のデータセットとオンラインA/Bテストの実験により、提案モデルがドメイン間の情報を効果的に伝達できることが証明された。
論文 参考訳(メタデータ) (2024-07-01T02:27:54Z) - R-Eval: A Unified Toolkit for Evaluating Domain Knowledge of Retrieval Augmented Large Language Models [51.468732121824125]
大規模言語モデルは一般的なNLPタスクにおいて顕著な成功を収めてきたが、ドメイン固有の問題には不足する可能性がある。
既存の評価ツールは、ドメイン知識の深さを掘り下げることなく、いくつかのベースラインを提供し、様々なドメインで評価するのみである。
本稿では、R-Evalツールキット(R-Evalツールキット)を導入し、異なるRAGの評価を合理化することによるALLMの評価の課題に対処する。
論文 参考訳(メタデータ) (2024-06-17T15:59:49Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendationは、異なるドメイン間でユーザのシーケンシャルな好みをマイニングし、転送することを目的としている。
本稿では,ユーザ検索手法を探索し,CDSRの性能向上を目的とした URLLM という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T09:19:54Z) - Diffusion Cross-domain Recommendation [0.0]
コールドスタートユーザに高品質な結果を提供するために拡散クロスドメイン勧告(DiffCDR)を提案する。
まず、DPMの理論を採用し、ターゲットドメインにユーザの埋め込みを生成する拡散モジュール(DIM)を設計する。
さらに、ターゲットドメインのラベルデータを検討し、タスク指向の損失関数を作成し、DiffCDRが特定のタスクに適応できるようにする。
論文 参考訳(メタデータ) (2024-02-03T15:14:51Z) - Cross-Domain Few-Shot Segmentation via Iterative Support-Query
Correspondence Mining [81.09446228688559]
Cross-Domain Few-Shots (CD-FSS) は、限定された例のみを用いて、異なるドメインから新しいカテゴリを分割するという課題を提起する。
本稿では,CD-FSSの課題に対処する新しいクロスドメイン微調整手法を提案する。
論文 参考訳(メタデータ) (2024-01-16T14:45:41Z) - Multi-Prompt Alignment for Multi-Source Unsupervised Domain Adaptation [86.02485817444216]
マルチプロンプトアライメント(MPA: Multi-Prompt Alignment)は,マルチソースUDAのためのシンプルかつ効率的なフレームワークである。
MPAは、学習したプロンプトを自動エンコードプロセスで認知し、再構築されたプロンプトの合意を最大化することでそれらを調整する。
実験によると、MPAは3つの一般的なデータセットで最先端の結果を達成し、DomainNetの平均精度は54.1%である。
論文 参考訳(メタデータ) (2022-09-30T03:40:10Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - Dual Attentive Sequential Learning for Cross-Domain Click-Through Rate
Prediction [76.98616102965023]
クロスドメインレコメンダシステムは、コールドスタートとスパシティの問題に対処するための強力な方法である。
本稿では,二元学習機構に基づくクロスドメインシーケンシャルなレコメンデーション手法を提案する。
論文 参考訳(メタデータ) (2021-06-05T01:21:21Z) - A Deep Framework for Cross-Domain and Cross-System Recommendations [18.97641276417075]
CDR(Cross-Domain Recommendation)とCSR(Cross-System Recommendation)は、レコメンダシステムにおけるデータ空間の問題に対処する、有望なソリューションである。
本稿では,行列因子化(MF)モデルと完全接続型ディープニューラルネットワーク(DNN)に基づく,DCDCSRと呼ばれるクロスドメインおよびクロスシステムレコメンデーションのためのディープフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-14T06:11:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。