論文の概要: Sharpness-Aware Cross-Domain Recommendation to Cold-Start Users
- arxiv url: http://arxiv.org/abs/2408.01931v2
- Date: Tue, 06 Aug 2024 05:45:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 18:21:56.821649
- Title: Sharpness-Aware Cross-Domain Recommendation to Cold-Start Users
- Title(参考訳): シャープネスを意識したコールドスタートユーザへのクロスドメイン勧告
- Authors: Guohang Zeng, Qian Zhang, Guangquan Zhang, Jie Lu,
- Abstract要約: CDR(Cross-Domain Recommendation)は、推薦システムにおけるコールドスタート問題を解決するために、トランスファーラーニングにインスパイアされた有望なパラダイムである。
シャープネス対応CDR(SCDR)と呼ばれる新しいCDR法を提案する。
- 参考スコア(独自算出の注目度): 29.229433535780153
- License:
- Abstract: Cross-Domain Recommendation (CDR) is a promising paradigm inspired by transfer learning to solve the cold-start problem in recommender systems. Existing state-of-the-art CDR methods train an explicit mapping function to transfer the cold-start users from a data-rich source domain to a target domain. However, a limitation of these methods is that the mapping function is trained on overlapping users across domains, while only a small number of overlapping users are available for training. By visualizing the loss landscape of the existing CDR model, we find that training on a small number of overlapping users causes the model to converge to sharp minima, leading to poor generalization. Based on this observation, we leverage loss-geometry-based machine learning approach and propose a novel CDR method called Sharpness-Aware CDR (SCDR). Our proposed method simultaneously optimizes recommendation loss and loss sharpness, leading to better generalization with theoretical guarantees. Empirical studies on real-world datasets demonstrate that SCDR significantly outperforms the other CDR models for cold-start recommendation tasks, while concurrently enhancing the model's robustness to adversarial attacks.
- Abstract(参考訳): CDR(Cross-Domain Recommendation)は、推薦システムにおけるコールドスタート問題を解決するために、トランスファーラーニングにインスパイアされた有望なパラダイムである。
既存の最先端のCDRメソッドでは、コールドスタートユーザをデータリッチソースドメインからターゲットドメインに転送するために、明示的なマッピング関数をトレーニングしている。
しかし、これらの手法の限界は、マッピング関数がドメイン間で重複するユーザを訓練するのに対して、少数の重複するユーザしかトレーニングに利用できないことである。
既存のCDRモデルの損失景観を可視化することにより,少数の重複ユーザに対するトレーニングにより,モデルがシャープなミニマに収束し,一般化の低さにつながることがわかった。
本研究は,ロス幾何学に基づく機械学習手法を活用し,シャープネス・アウェア CDR (SCDR) と呼ばれる新しいCDR手法を提案する。
提案手法は,推奨損失と損失のシャープネスを同時に最適化し,理論的な保証を伴ってより高度な一般化を実現する。
実世界のデータセットに関する実証的研究により、SCDRはコールドスタートレコメンデーションタスクにおいて他のCDRモデルよりも大幅に優れており、同時に敵の攻撃に対するモデルの堅牢性も向上している。
関連論文リスト
- Graph Signal Processing for Cross-Domain Recommendation [37.87497277046321]
クロスドメインレコメンデーション(CDR)は、高密度ドメインからのユーザ-イテムインタラクションを活用して、データ空間とコールドスタート問題を緩和することにより、従来のレコメンデーションシステムを拡張する。
既存のCDR手法の多くは、重複するユーザの割合と、ソースドメインとターゲットドメインの固有の相違に敏感である。
GSPに基づく統一CDRフレームワークであるCGSPを提案し、ターゲットのみの類似性とソースブリッジの類似性を柔軟に組み合わせて構築されたクロスドメイン類似性グラフを利用する。
論文 参考訳(メタデータ) (2024-07-17T07:52:45Z) - Diffusion Cross-domain Recommendation [0.0]
コールドスタートユーザに高品質な結果を提供するために拡散クロスドメイン勧告(DiffCDR)を提案する。
まず、DPMの理論を採用し、ターゲットドメインにユーザの埋め込みを生成する拡散モジュール(DIM)を設計する。
さらに、ターゲットドメインのラベルデータを検討し、タスク指向の損失関数を作成し、DiffCDRが特定のタスクに適応できるようにする。
論文 参考訳(メタデータ) (2024-02-03T15:14:51Z) - Towards Open-world Cross-Domain Sequential Recommendation: A Model-Agnostic Contrastive Denoising Approach [16.09514981871128]
クロスドメインシーケンシャルレコメンデーション(CDSR)は、従来のシーケンシャルレコメンデーション(SR)システムに存在するデータ空間の問題に対処することを目的としている。
現実世界のレコメンデーションシステムでは、CDSRシナリオは通常、疎い振る舞いを持つ長い尾を持つユーザーの大多数と、一つのドメインにしか存在しないコールドスタートユーザーで構成される。
論文 参考訳(メタデータ) (2023-11-08T15:33:06Z) - CDR-Adapter: Learning Adapters to Dig Out More Transferring Ability for
Cross-Domain Recommendation Models [15.487701831604767]
クロスドメインレコメンデーション(CDR)は、ソースドメインからの知識を利用して、ターゲットドメインのレコメンデーションパフォーマンスを改善する、有望なソリューションである。
従来のCDRアプローチは主に、知識伝達を促進するためにマッピング関数を学習するEmbedding and Mapping(EMCDR)フレームワークに従ったものだ。
我々は,CDRにおけるデータ分散性やコールドスタート問題に対処する,スケーラブルで効率的なパラダイムであるCDR-Adapterを提案する。
論文 参考訳(メタデータ) (2023-11-04T13:03:24Z) - Black-box Adversarial Attacks against Dense Retrieval Models: A
Multi-view Contrastive Learning Method [115.29382166356478]
本稿では,敵探索攻撃(AREA)タスクを紹介する。
DRモデルは、DRモデルによって取得された候補文書の初期セットの外側にあるターゲット文書を取得するように、DRモデルを騙すことを目的としている。
NRM攻撃で報告された有望な結果は、DRモデルに一般化されない。
マルチビュー表現空間における対照的な学習問題として,DRモデルに対する攻撃を形式化する。
論文 参考訳(メタデータ) (2023-08-19T00:24:59Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start
Users [31.949188328354854]
クロスドメインレコメンデーション(CDR)は、補助的な(ソース)ドメインからの豊富な情報を使用して、ターゲットドメインにおけるレコメンダシステムの性能を改善する。
トランスファーステージとメタステージを有するCDR(TMCDR)のためのトランスファーメタフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-11T05:15:53Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
逐次リコメンデーションタスクのための自己指導型強化学習を提案する。
提案手法は,2つの出力層を持つ標準レコメンデーションモデルを強化する。
このようなアプローチに基づいて、自己監督型Q-ラーニング(SQN)と自己監督型アクター・クライブ(SAC)という2つのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T11:18:57Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。