GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2411.19895v2
- Date: Mon, 02 Dec 2024 17:44:52 GMT
- Title: GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting
- Authors: Zixuan Chen, Guangcong Wang, Jiahao Zhu, Jianhuang Lai, Xiaohua Xie,
- Abstract summary: 3D Gaussian Splatting (3DGS) has recently created impressive assets for various applications.
Existing watermarking methods are not suited for 3DGS considering security, capacity, and invisibility.
We propose GuardSplat, an innovative and efficient framework that effectively protects the copyright of 3DGS assets.
- Score: 70.81218231206617
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has recently created impressive assets for various applications. However, the copyright of these assets is not well protected as existing watermarking methods are not suited for 3DGS considering security, capacity, and invisibility. Besides, these methods often require hours or even days for optimization, limiting the application scenarios. In this paper, we propose GuardSplat, an innovative and efficient framework that effectively protects the copyright of 3DGS assets. Specifically, 1) We first propose a CLIP-guided Message Decoupling Optimization module for training the message decoder, leveraging CLIP's aligning capability and rich representations to achieve a high extraction accuracy with minimal optimization costs, presenting exceptional capability and efficiency. 2) Then, we propose a Spherical-harmonic-aware (SH-aware) Message Embedding module tailored for 3DGS, which employs a set of SH offsets to seamlessly embed the message into the SH features of each 3D Gaussian while maintaining the original 3D structure. It enables the 3DGS assets to be watermarked with minimal fidelity trade-offs and prevents malicious users from removing the messages from the model files, meeting the demands for invisibility and security. 3) We further propose an Anti-distortion Message Extraction module to improve robustness against various visual distortions. Extensive experiments demonstrate that GuardSplat outperforms the state-of-the-art methods and achieves fast optimization speed.
Related papers
- CLIP-GS: Unifying Vision-Language Representation with 3D Gaussian Splatting [88.24743308058441]
We present CLIP-GS, a novel multimodal representation learning framework grounded in 3DGS.
We develop an efficient way to generate triplets of 3DGS, images, and text, facilitating CLIP-GS in learning unified multimodal representations.
arXiv Detail & Related papers (2024-12-26T09:54:25Z) - WATER-GS: Toward Copyright Protection for 3D Gaussian Splatting via Universal Watermarking [44.335142946449245]
WATER-GS is a novel method designed to protect 3DGS copyrights through a universal watermarking strategy.
We introduce a pre-trained watermark decoder, treating raw 3DGS generative modules as potential watermarks to ensure imperceptibility.
We implement novel 3D distortion layers to enhance the robustness of the embedded watermark against common real-world distortions of point cloud data.
arXiv Detail & Related papers (2024-12-07T16:44:22Z) - Splats in Splats: Embedding Invisible 3D Watermark within Gaussian Splatting [28.790625685438677]
WaterGS is the first 3DGS watermarking framework that embeds 3D content in 3DGS itself without modifying any attributes of the vanilla 3DGS.
Tests indicate that WaterGS significantly outperforms existing 3D steganography techniques, with 5.31% higher scene fidelity and 3X faster rendering speed.
arXiv Detail & Related papers (2024-12-04T08:40:11Z) - GaussianMarker: Uncertainty-Aware Copyright Protection of 3D Gaussian Splatting [41.90891053671943]
Digital watermarking techniques can be applied to embed ownership information discreetly within 3DGS models.
Naively embedding the watermark on a pre-trained 3DGS can cause obvious distortion in rendered images.
We propose an uncertainty-based method that constrains the perturbation of model parameters to achieve invisible watermarking for 3DGS.
arXiv Detail & Related papers (2024-10-31T08:08:54Z) - Poison-splat: Computation Cost Attack on 3D Gaussian Splatting [90.88713193520917]
We reveal a significant security vulnerability that has been largely overlooked in 3DGS.
The adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training.
Such a computation cost attack is achieved by addressing a bi-level optimization problem.
arXiv Detail & Related papers (2024-10-10T17:57:29Z) - Towards Secure and Usable 3D Assets: A Novel Framework for Automatic Visible Watermarking [11.176240030501184]
3D models, particularly AI-generated ones, have witnessed a recent surge across various industries such as entertainment.
We rigorously define the novel task of automated 3D visible watermarking in terms of two competing aspects: watermark quality and asset utility.
We propose a method of embedding visible watermarks that automatically determines the right location, orientation, and number of watermarks to be placed on arbitrary 3D assets.
arXiv Detail & Related papers (2024-08-31T00:52:29Z) - GS-Hider: Hiding Messages into 3D Gaussian Splatting [18.16759704305008]
3D Gaussian Splatting (3DGS) has already become the emerging research focus in the fields of 3D scene reconstruction and novel view synthesis.
It is crucial to protect the copyright, integrity, and privacy of such 3D assets.
We propose a steganography framework for 3DGS, dubbed GS-Hider, which can embed 3D scenes and images into original GS point clouds.
arXiv Detail & Related papers (2024-05-24T00:18:15Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.