The Femininomenon of Inequality: A Data-Driven Analysis and Cluster Profiling in Indonesia
- URL: http://arxiv.org/abs/2412.00012v1
- Date: Wed, 13 Nov 2024 23:45:58 GMT
- Title: The Femininomenon of Inequality: A Data-Driven Analysis and Cluster Profiling in Indonesia
- Authors: J. S. Muthmaina,
- Abstract summary: This study examines regional disparities in gender empowerment and inequality through the Gender Empowerment Index (IDG) and Gender Inequality Index (IKG)
Despite Indonesia's economic growth and incremental progress in gender equality, substantial regional differences remain.
The analysis reveals that local socio-economic conditions and governance frameworks play a critical role in shaping regional gender dynamics.
- Score: 0.0
- License:
- Abstract: This study addresses the persistent challenges of Workplace Gender Equality (WGE) in Indonesia, examining regional disparities in gender empowerment and inequality through the Gender Empowerment Index (IDG) and Gender Inequality Index (IKG). Despite Indonesia's economic growth and incremental progress in gender equality, as indicated by improvements in the IDG and IKG scores from 2018 to 2023, substantial regional differences remain. Utilizing k-means clustering, the study identifies two distinct clusters of regions with contrasting gender profiles. Cluster 0 includes regions like DKI Jakarta and Central Java, characterized by higher gender empowerment and lower inequality, while Cluster 1 comprises areas such as Papua and North Maluku, where gender disparities are more pronounced. The analysis reveals that local socio-economic conditions and governance frameworks play a critical role in shaping regional gender dynamics. Correlation analyses further demonstrate that higher empowerment is generally associated with lower inequality and greater female representation in professional roles. These findings underscore the importance of targeted, region-specific interventions to promote WGE, addressing both structural and cultural barriers. The insights provided by this study aim to guide policymakers in developing tailored strategies to foster gender equality and enhance women's participation in the workforce across Indonesia's diverse regions.
Related papers
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.
Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.
We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - Saliency-Based diversity and fairness Metric and FaceKeepOriginalAugment: A Novel Approach for Enhancing Fairness and Diversity [46.74201905814679]
We introduce an extension of the KeepOriginalAugment method, termed FaceKeepOriginalAugment, which explores various debiasing aspects-geographical, gender, and stereotypical biases-in computer vision models.
By maintaining a delicate balance between data diversity and information preservation, our approach empowers models to exploit both diverse salient and non-salient regions.
We quantify dataset diversity across a range of datasets, including Flickr Faces HQ (FFHQ), WIKI, IMDB, Labelled Faces in the Wild (LFW), UTK Faces, and Diverse dataset.
arXiv Detail & Related papers (2024-10-29T13:49:23Z) - Report on Female Participation in Informatics degrees in Europe [3.498239025413087]
This study aims to enrich and leverage data from the Informatics Europe Higher Education (IEHE) data portal.
The research examines the proportion of female students, first-year enrollments, and degrees awarded to women in the field.
arXiv Detail & Related papers (2024-10-15T09:33:16Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
Large language models (LLMs) have exhibited remarkable capabilities in natural language generation, but have also been observed to magnify societal biases.
GenderCARE is a comprehensive framework that encompasses innovative Criteria, bias Assessment, Reduction techniques, and Evaluation metrics.
arXiv Detail & Related papers (2024-08-22T15:35:46Z) - Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness [6.683051393349788]
''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities.
An increasing number of AI tools are applied to decision-making processes in various sectors such as health, energy, and housing.
This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies.
arXiv Detail & Related papers (2024-05-24T08:10:31Z) - A computational model for gender asset gap management with a focus on gender disparity in land acquisition and land tenure security [0.0]
Land acquisition and land tenure security are complex issues that affect various cultural groups differently.
The proposed framework aims to fill this gap by incorporating cultural and policy factors in developing a new measurement framework.
arXiv Detail & Related papers (2024-04-14T06:59:25Z) - GIVL: Improving Geographical Inclusivity of Vision-Language Models with
Pre-Training Methods [62.076647211744564]
We propose GIVL, a Geographically Inclusive Vision-and-Language Pre-trained model.
There are two attributes of geo-diverse visual concepts which can help to learn geo-diverse knowledge: 1) concepts under similar categories have unique knowledge and visual characteristics, 2) concepts with similar visual features may fall in completely different categories.
Compared with similar-size models pre-trained with similar scale of data, GIVL achieves state-of-the-art (SOTA) and more balanced performance on geo-diverse V&L tasks.
arXiv Detail & Related papers (2023-01-05T03:43:45Z) - Deep Generative Views to Mitigate Gender Classification Bias Across
Gender-Race Groups [0.8594140167290097]
We propose a bias mitigation strategy to improve classification accuracy and reduce bias across gender-racial groups.
We leverage the power of generative views, structured learning, and evidential learning towards mitigating gender classification bias.
arXiv Detail & Related papers (2022-08-17T16:23:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.