論文の概要: Creating Hierarchical Dispositions of Needs in an Agent
- arxiv url: http://arxiv.org/abs/2412.00044v1
- Date: Sat, 23 Nov 2024 06:41:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 08:47:22.069745
- Title: Creating Hierarchical Dispositions of Needs in an Agent
- Title(参考訳): エージェントにおけるニーズの階層的配置の作成
- Authors: Tofara Moyo,
- Abstract要約: 競合する目的を優先する階層的抽象化を学習するための新しい手法を提案する。
我々は、これらのスカラー値とグローバル報酬を優先的に順序付けする方程式を導出し、ゴール形成を知らせるニーズ階層を誘導する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present a novel method for learning hierarchical abstractions that prioritize competing objectives, leading to improved global expected rewards. Our approach employs a secondary rewarding agent with multiple scalar outputs, each associated with a distinct level of abstraction. The traditional agent then learns to maximize these outputs in a hierarchical manner, conditioning each level on the maximization of the preceding level. We derive an equation that orders these scalar values and the global reward by priority, inducing a hierarchy of needs that informs goal formation. Experimental results on the Pendulum v1 environment demonstrate superior performance compared to a baseline implementation.We achieved state of the art results.
- Abstract(参考訳): 本稿では、競合する目的を優先する階層的抽象化の学習方法を提案する。
提案手法では、複数のスカラー出力を持つ二次報酬エージェントを用いており、それぞれが異なる抽象レベルに関連付けられている。
従来のエージェントは、これらの出力を階層的な方法で最大化することを学び、各レベルを前のレベルの最大化で条件付けする。
我々は、これらのスカラー値とグローバル報酬を優先的に順序付けする方程式を導出し、ゴール形成を知らせるニーズ階層を誘導する。
Pendulum v1環境における実験結果は,ベースライン実装よりも優れた性能を示し,最先端の成果を得た。
関連論文リスト
- Action abstractions for amortized sampling [49.384037138511246]
本稿では、政策最適化プロセスに行動抽象化(高レベルの行動)の発見を組み込むアプローチを提案する。
我々のアプローチでは、多くの高次軌道にまたがってよく使われるアクション列を反復的に抽出し、それらをアクション空間に追加する単一のアクションにチャンキングする。
論文 参考訳(メタデータ) (2024-10-19T19:22:50Z) - From Logits to Hierarchies: Hierarchical Clustering made Simple [16.132657141993548]
事前訓練された非階層クラスタリングモデル上に実装された軽量なプロシージャは、階層クラスタリングに特化して設計されたモデルより優れていることを示す。
提案手法は,微調整を必要とせず,ログを出力する事前学習クラスタリングモデルに適用可能である。
論文 参考訳(メタデータ) (2024-10-10T12:27:45Z) - Universal Pooling Method of Multi-layer Features from Pretrained Models for Speaker Verification [7.005068872406135]
大規模事前学習ネットワークを活用した自動話者検証(ASV)研究の最近の進歩が達成されている。
ASVのための事前学習モデルの多層特性を利用するための新しい手法を提案する。
提案した層間処理が,事前学習モデルを利用する利点の最大化にどのように役立つかを示す。
論文 参考訳(メタデータ) (2024-09-12T05:55:32Z) - Reinforcement Learning with Options and State Representation [105.82346211739433]
この論文は、強化学習分野を探求し、改良された手法を構築することを目的としている。
階層的強化学習(Hierarchical Reinforcement Learning)として知られる階層的な方法で学習タスクを分解することで、そのような目標に対処する。
論文 参考訳(メタデータ) (2024-03-16T08:30:55Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
我々は,専門家の軌跡におけるサブゴールの同定に強化学習を用いることを提案する。
同定されたサブゴールに対するベクトル量子化生成モデルを構築し,サブゴールレベルの計画を行う。
実験では、このアルゴリズムは複雑な長い水平決定問題の解法に優れ、最先端のアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-01-30T15:04:39Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Interpretable Reinforcement Learning with Multilevel Subgoal Discovery [77.34726150561087]
離散環境のための新しい強化学習モデルを提案する。
モデルでは、エージェントは確率的ルールの形で環境に関する情報を学習する。
学習には報酬関数は不要であり、エージェントは達成するための第一の目標のみを与える必要がある。
論文 参考訳(メタデータ) (2022-02-15T14:04:44Z) - Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon
Reasoning [120.38381203153159]
強化学習は、複雑なタスクを効果的に実行するポリシーを訓練することができる。
長期のタスクでは、これらのメソッドのパフォーマンスは水平線とともに劣化し、しばしば推論と下層のスキルの構築を必要とします。
そこで我々は,各下層スキルに対応する値関数を用いて,そのような表現を生成するシンプルな手法として,値関数空間を提案する。
論文 参考訳(メタデータ) (2021-11-04T22:46:16Z) - From proprioception to long-horizon planning in novel environments: A
hierarchical RL model [4.44317046648898]
本稿では,異なるタイプの推論を反映した,単純で3段階の階層型アーキテクチャを提案する。
本手法をMujoco Ant環境における一連のナビゲーションタスクに適用する。
論文 参考訳(メタデータ) (2020-06-11T17:19:12Z) - Progressive Learning and Disentanglement of Hierarchical Representations [10.201945347770643]
本稿では,ハイレベルから低レベルの抽象化から,独立した階層表現を段階的に学習する戦略を提案する。
提案したモデルが既存の作品と比較して歪みを改善する能力について定量的に示す。
論文 参考訳(メタデータ) (2020-02-24T21:19:38Z) - Weakly Supervised Video Summarization by Hierarchical Reinforcement
Learning [38.261971839012176]
本稿では,タスク全体を複数のサブタスクに分解して要約品質を向上させる,弱教師付き階層型強化学習フレームワークを提案する。
2つのベンチマークデータセットの実験は、我々の提案が教師付きアプローチよりも優れたパフォーマンスを達成したことを示している。
論文 参考訳(メタデータ) (2020-01-12T07:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。