論文の概要: From Logits to Hierarchies: Hierarchical Clustering made Simple
- arxiv url: http://arxiv.org/abs/2410.07858v1
- Date: Thu, 10 Oct 2024 12:27:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 14:25:50.448982
- Title: From Logits to Hierarchies: Hierarchical Clustering made Simple
- Title(参考訳): ログから階層へ:階層的クラスタリングはシンプルになった
- Authors: Emanuele Palumbo, Moritz Vandenhirtz, Alain Ryser, Imant Daunhawer, Julia E. Vogt,
- Abstract要約: 事前訓練された非階層クラスタリングモデル上に実装された軽量なプロシージャは、階層クラスタリングに特化して設計されたモデルより優れていることを示す。
提案手法は,微調整を必要とせず,ログを出力する事前学習クラスタリングモデルに適用可能である。
- 参考スコア(独自算出の注目度): 16.132657141993548
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The structure of many real-world datasets is intrinsically hierarchical, making the modeling of such hierarchies a critical objective in both unsupervised and supervised machine learning. Recently, novel approaches for hierarchical clustering with deep architectures have been proposed. In this work, we take a critical perspective on this line of research and demonstrate that many approaches exhibit major limitations when applied to realistic datasets, partly due to their high computational complexity. In particular, we show that a lightweight procedure implemented on top of pre-trained non-hierarchical clustering models outperforms models designed specifically for hierarchical clustering. Our proposed approach is computationally efficient and applicable to any pre-trained clustering model that outputs logits, without requiring any fine-tuning. To highlight the generality of our findings, we illustrate how our method can also be applied in a supervised setup, recovering meaningful hierarchies from a pre-trained ImageNet classifier.
- Abstract(参考訳): 多くの実世界のデータセットの構造は本質的に階層的であり、そのような階層のモデリングは教師なしと教師なしの両方の機械学習において重要な目標となっている。
近年,階層クラスタリングと深層アーキテクチャの新たなアプローチが提案されている。
本研究では,この研究の行方に対して批判的な視点を採り,多くのアプローチが現実的なデータセットに適用した場合,その計算複雑性の高さから大きな限界を呈していることを示す。
特に、事前訓練された非階層クラスタリングモデル上に実装された軽量なプロシージャが、階層クラスタリングに特化して設計されたモデルより優れていることを示す。
提案手法は,微調整を必要とせず,ログを出力する事前学習クラスタリングモデルに適用可能である。
本稿では,本手法を教師付きセットアップに適用し,事前学習したImageNet分類器から有意義な階層を復元する方法について述べる。
関連論文リスト
- Exploiting Data Hierarchy as a New Modality for Contrastive Learning [0.0]
この研究は、階層的に構造化されたデータが、ニューラルネットワークが大聖堂の概念的な表現を学ぶのにどのように役立つかを研究する。
基礎となるWikiScenesデータセットは、大聖堂の構成要素の空間的に整理された階層構造を提供する。
本稿では,エンコーダの潜伏空間におけるデータ空間階層を表現するために,三重項マージン損失を利用した新しい階層的コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:47:49Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
局所・グローバル構造保存を用いた効率的なマルチビューグラフクラスタリング(EMVGC-LG)という,アンカーベースのマルチビューグラフクラスタリングフレームワークを提案する。
具体的には、EMVGC-LGがクラスタリング品質を向上させるために、アンカー構築とグラフ学習を共同で最適化する。
さらに、EMVGC-LGはサンプル数に関する既存のAMVGCメソッドの線形複雑性を継承する。
論文 参考訳(メタデータ) (2023-08-31T12:12:30Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Generating Hierarchical Explanations on Text Classification Without
Connecting Rules [14.624434065904232]
我々は、接続ルールが、モデル決定プロセスを忠実に反映する能力を損なう可能性があると主張している。
接続ルールを使わずに階層的説明を生成することを提案し,階層的クラスタを生成するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T14:11:23Z) - ExpertNet: A Symbiosis of Classification and Clustering [22.324813752423044]
ExpertNetは、クラスタ化された潜在表現を学習し、クラスタ固有の分類器を効果的に組み合わせてそれらを活用するために、新しいトレーニング戦略を使用している。
本研究では,6つの大規模臨床データセットの最先端手法に対するExpertNetの優位性を実証する。
論文 参考訳(メタデータ) (2022-01-17T11:00:30Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
表現学習とクラスタリングを1つのパイプラインに初めて統合するフレームワークを提案する。
提案フレームワークは,近年開発された生成モデルを用いて,本質的な特徴を学習する能力を活用している。
実験の結果,提案手法の性能は,最先端の手法よりも優れているか,少なくとも同等であることがわかった。
論文 参考訳(メタデータ) (2021-06-11T04:08:54Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Leveraging Class Hierarchies with Metric-Guided Prototype Learning [5.070542698701158]
多くの分類タスクでは、ターゲットクラスのセットは階層に分類できる。
この構造はクラス間の意味的距離を誘導し、コスト行列の形で要約することができる。
本稿では,この指標を原型ネットワークの監視に組み込むことにより,階層型クラス構造をモデル化することを提案する。
論文 参考訳(メタデータ) (2020-07-06T20:22:08Z) - Fair Hierarchical Clustering [92.03780518164108]
従来のクラスタリングにおける過剰表現を緩和する公平性の概念を定義する。
我々のアルゴリズムは、目的に対して無視できない損失しか持たない、公平な階層的なクラスタリングを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T01:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。