Predicting Extubation Failure in Intensive Care: The Development of a Novel, End-to-End Actionable and Interpretable Prediction System
- URL: http://arxiv.org/abs/2412.00105v1
- Date: Wed, 27 Nov 2024 22:19:47 GMT
- Title: Predicting Extubation Failure in Intensive Care: The Development of a Novel, End-to-End Actionable and Interpretable Prediction System
- Authors: Akram Yoosoofsah,
- Abstract summary: Predicting extubation failure in intensive care is challenging due to complex data and the severe consequences of inaccurate predictions.
Machine learning shows promise in improving clinical decision-making but often fails to account for temporal patient trajectories and model interpretability.
This study aimed to develop an actionable, interpretable prediction system for extubation failure using temporal modelling approaches.
- Score: 0.0
- License:
- Abstract: Predicting extubation failure in intensive care is challenging due to complex data and the severe consequences of inaccurate predictions. Machine learning shows promise in improving clinical decision-making but often fails to account for temporal patient trajectories and model interpretability, highlighting the need for innovative solutions. This study aimed to develop an actionable, interpretable prediction system for extubation failure using temporal modelling approaches such as Long Short-Term Memory (LSTM) and Temporal Convolutional Networks (TCN). A retrospective cohort study of 4,701 mechanically ventilated patients from the MIMIC-IV database was conducted. Data from the 6 hours before extubation, including static and dynamic features, were processed through novel techniques addressing data inconsistency and synthetic data challenges. Feature selection was guided by clinical relevance and literature benchmarks. Iterative experimentation involved training LSTM, TCN, and LightGBM models. Initial results showed a strong bias toward predicting extubation success, despite advanced hyperparameter tuning and static data inclusion. Data was stratified by sampling frequency to reduce synthetic data impacts, leading to a fused decision system with improved performance. However, all architectures yielded modest predictive power (AUC-ROC ~0.6; F1 <0.5) with no clear advantage in incorporating static data or additional features. Ablation analysis indicated minimal impact of individual features on model performance. This thesis highlights the challenges of synthetic data in extubation failure prediction and introduces strategies to mitigate bias, including clinician-informed preprocessing and novel feature subsetting. While performance was limited, the study provides a foundation for future work, emphasising the need for reliable, interpretable models to optimise ICU outcomes.
Related papers
- Zero-shot generation of synthetic neurosurgical data with large language models [0.7373617024876725]
This study aims to evaluate the capability of zero-shot generation of synthetic neurosurgical data with a large language model (LLM), GPT-4o.
Data synthesized with GPT-4o can effectively augment clinical data with small sample sizes, and train ML models for prediction of neurosurgical outcomes.
arXiv Detail & Related papers (2025-02-13T18:21:15Z) - Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long
Follow-up Time [28.11470886127216]
Causal effect estimation for dynamic treatment regimes (DTRs) contributes to sequential decision making.
We combine outcome regression models with treatment models for high dimensional features using uncensored subjects that are small in sample size.
Also, the developed deep Bayesian models can model uncertainty and output the prediction variance which is essential for the safety-aware applications, such as self-driving cars and medical treatment design.
arXiv Detail & Related papers (2021-09-20T13:21:39Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
arXiv Detail & Related papers (2020-10-28T15:05:08Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.