Semi-Supervised Neural Processes for Articulated Object Interactions
- URL: http://arxiv.org/abs/2412.00145v1
- Date: Thu, 28 Nov 2024 21:20:06 GMT
- Title: Semi-Supervised Neural Processes for Articulated Object Interactions
- Authors: Emily Liu, Michael Noseworthy, Nicholas Roy,
- Abstract summary: This paper introduces the Semi-Supervised Neural Process (SSNP), an adaptive reward-prediction model designed for scenarios in which only a small subset of objects have labeled interaction data.
Jointly training with both types of data allows the model to focus more effectively on generalizable features.
The efficacy of SSNP is demonstrated through a door-opening task, leading to better performance than other semi-supervised methods, and only using a fraction of the data compared to other adaptive models.
- Score: 10.847409934374205
- License:
- Abstract: The scarcity of labeled action data poses a considerable challenge for developing machine learning algorithms for robotic object manipulation. It is expensive and often infeasible for a robot to interact with many objects. Conversely, visual data of objects, without interaction, is abundantly available and can be leveraged for pretraining and feature extraction. However, current methods that rely on image data for pretraining do not easily adapt to task-specific predictions, since the learned features are not guaranteed to be relevant. This paper introduces the Semi-Supervised Neural Process (SSNP): an adaptive reward-prediction model designed for scenarios in which only a small subset of objects have labeled interaction data. In addition to predicting reward labels, the latent-space of the SSNP is jointly trained with an autoencoding objective using passive data from a much larger set of objects. Jointly training with both types of data allows the model to focus more effectively on generalizable features and minimizes the need for extensive retraining, thereby reducing computational demands. The efficacy of SSNP is demonstrated through a door-opening task, leading to better performance than other semi-supervised methods, and only using a fraction of the data compared to other adaptive models.
Related papers
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Keypoint Abstraction using Large Models for Object-Relative Imitation Learning [78.92043196054071]
Generalization to novel object configurations and instances across diverse tasks and environments is a critical challenge in robotics.
Keypoint-based representations have been proven effective as a succinct representation for essential object capturing features.
We propose KALM, a framework that leverages large pre-trained vision-language models to automatically generate task-relevant and cross-instance consistent keypoints.
arXiv Detail & Related papers (2024-10-30T17:37:31Z) - Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting [4.220336689294245]
We propose Distribution-Level Feature Distancing (DLFD), a novel method that efficiently forgets instances while preserving task-relevant feature correlations.
Our method synthesizes data samples by optimizing the feature distribution to be distinctly different from that of forget samples, achieving effective results within a single training epoch.
arXiv Detail & Related papers (2024-09-23T06:51:10Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
This paper introduces the concept of machine unlearning which is specifically designed to remove the influence of part of the dataset on an already trained forecaster.
A performance-aware algorithm is proposed by evaluating the sensitivity of local model parameter change using influence function and sample re-weighting.
We tested the unlearning algorithms on linear, CNN, andMixer based load forecasters with a realistic load dataset.
arXiv Detail & Related papers (2023-08-28T08:50:12Z) - Efficient and Robust Training of Dense Object Nets for Multi-Object
Robot Manipulation [8.321536457963655]
We propose a framework for robust and efficient training of Dense Object Nets (DON)
We focus on training with multi-object data instead of singulated objects, combined with a well-chosen augmentation scheme.
We demonstrate the robustness and accuracy of our proposed framework on a real-world robotic grasping task.
arXiv Detail & Related papers (2022-06-24T08:24:42Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATE is a robot system that interacts with human through natural language and grasps a specified object in clutter.
We train separate neural networks for object detection, for visual grounding, for question generation, and for OBR detection and grasping.
We build a partially observable Markov decision process (POMDP) that integrates the learned neural network modules.
arXiv Detail & Related papers (2021-08-25T07:35:21Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
We propose a deep reinforcement learning approach that transforms the optimization procedure into an end-to-end learnable process.
Our experiments on real-world data show that our method is model-agnostic, relying only on feedback from model predictions.
arXiv Detail & Related papers (2021-06-04T16:54:36Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.