論文の概要: AerialGo: Walking-through City View Generation from Aerial Perspectives
- arxiv url: http://arxiv.org/abs/2412.00157v1
- Date: Fri, 29 Nov 2024 08:14:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:48:31.625510
- Title: AerialGo: Walking-through City View Generation from Aerial Perspectives
- Title(参考訳): AerialGo:空から見た街並み
- Authors: Fuqiang Zhao, Yijing Guo, Siyuan Yang, Xi Chen, Luo Wang, Lan Xu, Yingliang Zhang, Yujiao Shi, Jingyi Yu,
- Abstract要約: AerialGoは、空中画像からリアルな街並みを生成するフレームワークである。
AerialGoは、アクセス可能な航空データに地上視合成を条件付けすることで、地上レベルの画像に固有のプライバシーリスクを回避できる。
実験により、AerialGoは地上レベルのリアリズムと構造的コヒーレンスを著しく向上させることが示された。
- 参考スコア(独自算出の注目度): 48.53976414257845
- License:
- Abstract: High-quality 3D urban reconstruction is essential for applications in urban planning, navigation, and AR/VR. However, capturing detailed ground-level data across cities is both labor-intensive and raises significant privacy concerns related to sensitive information, such as vehicle plates, faces, and other personal identifiers. To address these challenges, we propose AerialGo, a novel framework that generates realistic walking-through city views from aerial images, leveraging multi-view diffusion models to achieve scalable, photorealistic urban reconstructions without direct ground-level data collection. By conditioning ground-view synthesis on accessible aerial data, AerialGo bypasses the privacy risks inherent in ground-level imagery. To support the model training, we introduce AerialGo dataset, a large-scale dataset containing diverse aerial and ground-view images, paired with camera and depth information, designed to support generative urban reconstruction. Experiments show that AerialGo significantly enhances ground-level realism and structural coherence, providing a privacy-conscious, scalable solution for city-scale 3D modeling.
- Abstract(参考訳): 高品質な3D都市再構築は、都市計画、ナビゲーション、AR/VRへの応用に不可欠である。
しかし、都市全体で詳細な地上レベルのデータを収集することは労働集約的であり、車両のプレート、顔、その他の個人識別などの機密情報に関連する重要なプライバシー上の懸念を提起する。
これらの課題に対処するために,AerialGoを提案する。AerialGoは,空中画像からリアルな街並みを生成する新しいフレームワークであり,多視点拡散モデルを利用して,地上データを直接収集することなく,スケーラブルでフォトリアリスティックな都市復興を実現する。
AerialGoは、アクセス可能な航空データに地上視合成を条件付けすることで、地上レベルの画像に固有のプライバシーリスクを回避できる。
モデルトレーニングを支援するために,都市再生を支援するために,多種多様な空中・地上画像を含む大規模データセットであるAerialGoデータセットを紹介した。
実験によると、AerialGoは地上レベルのリアリズムと構造的コヒーレンスを著しく向上させ、都市規模の3Dモデリングにプライバシーを意識したスケーラブルなソリューションを提供する。
関連論文リスト
- Horizon-GS: Unified 3D Gaussian Splatting for Large-Scale Aerial-to-Ground Scenes [55.15494682493422]
本稿では,ガウシアン・スプレイティング技術に基づく新しい手法であるHorizon-GSを導入し,航空やストリートビューの統一的な再構築とレンダリングに挑戦する。
提案手法は,これらの視点と新たなトレーニング戦略を組み合わせることによる重要な課題に対処し,視点の相違を克服し,高忠実度シーンを生成する。
論文 参考訳(メタデータ) (2024-12-02T17:42:00Z) - Drone-assisted Road Gaussian Splatting with Cross-view Uncertainty [10.37108303188536]
3D Gaussian Splatting (3D-GS)は、ニューラルレンダリングにおいて画期的な進歩を遂げた。
大規模な道路シーンレンダリングの一般的な忠実度は、入力画像によって制限されることが多い。
カービューのアンサンブルに基づくレンダリングの不確実性と空中画像とのマッチングにより、3D-GSにクロスビューの不確実性を導入する。
論文 参考訳(メタデータ) (2024-08-27T17:59:55Z) - SkyDiffusion: Ground-to-Aerial Image Synthesis with Diffusion Models and BEV Paradigm [14.492759165786364]
地上から地上への画像合成は、対応する地上の景観画像から現実的な空中画像を生成することに焦点を当てている。
本研究では,ストリートビュー画像から航空画像を合成する新しいクロスビュー生成手法であるSkyDiffusionを紹介する。
地上から地上までの多様な画像合成用途のために設計された新しいデータセット「Ground2Aerial-3」を紹介した。
論文 参考訳(メタデータ) (2024-08-03T15:43:56Z) - Urban Scene Diffusion through Semantic Occupancy Map [49.20779809250597]
UrbanDiffusionは、Bird's-Eye View (BEV)マップに条件付き3次元拡散モデルである。
我々のモデルは,潜在空間内のシーンレベルの構造の分布を学習する。
実世界の運転データセットをトレーニングした後、我々のモデルは多様な都市シーンを生成することができる。
論文 参考訳(メタデータ) (2024-03-18T11:54:35Z) - Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion [77.34078223594686]
本稿では,3次元スパース表現に拡散モデルを導入し,それらをニューラルレンダリング技術と組み合わせることで,直接3次元シーン生成のための新しいアーキテクチャを提案する。
具体的には、まず3次元拡散モデルを用いて、所定の幾何学の点レベルのテクスチャ色を生成し、次にフィードフォワード方式でシーン表現に変換する。
2つの都市規模データセットを用いた実験により,衛星画像から写真リアルなストリートビュー画像シーケンスとクロスビュー都市シーンを生成する能力を示した。
論文 参考訳(メタデータ) (2024-01-19T16:15:37Z) - UrbanBIS: a Large-scale Benchmark for Fine-grained Urban Building
Instance Segmentation [50.52615875873055]
都市BISは6つの実際の都市のシーンで構成され、25億点があり、面積は10.78平方キロメートルである。
UrbanBISは、建物、車両、植生、道路、橋など、豊富な都市オブジェクトに意味レベルのアノテーションを提供する。
UrbanBISは、きめ細かいサブカテゴリを導入した最初の3Dデータセットである。
論文 参考訳(メタデータ) (2023-05-04T08:01:38Z) - Urban Radiance Fields [77.43604458481637]
本研究では,都市屋外環境における世界地図作成によく利用されるスキャニングプラットフォームによって収集されたデータから3次元再構成と新しいビュー合成を行う。
提案手法は、制御された環境下での小さなシーンのための現実的な新しい画像の合成を実証したニューラルラジアンス場を拡張している。
これら3つのエクステンションはそれぞれ、ストリートビューデータの実験において、大幅なパフォーマンス改善を提供する。
論文 参考訳(メタデータ) (2021-11-29T15:58:16Z) - Deep Learning Guided Building Reconstruction from Satellite
Imagery-derived Point Clouds [39.36437891978871]
衛星画像から生成された点雲からモデル再構成を構築するための信頼性が高く効果的な手法を提案する。
具体的には、複雑で騒々しい場面で建築屋根の形状を区別するために、ディープラーニングのアプローチが採用されている。
大規模都市モデル生成の一般ニーズに対処する最初の取り組みとして、開発はオープンソースソフトウェアとして展開されている。
論文 参考訳(メタデータ) (2020-05-19T05:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。