論文の概要: Enhanced LLM-Based Framework for Predicting Null Pointer Dereference in Source Code
- arxiv url: http://arxiv.org/abs/2412.00216v1
- Date: Fri, 29 Nov 2024 19:24:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:48:44.559467
- Title: Enhanced LLM-Based Framework for Predicting Null Pointer Dereference in Source Code
- Title(参考訳): ソースコードにおけるNullポインタ参照予測のためのLLMベースの拡張フレームワーク
- Authors: Md. Fahim Sultan, Tasmin Karim, Md. Shazzad Hossain Shaon, Mohammad Wardat, Mst Shapna Akter,
- Abstract要約: 我々は「DeLLNeuN」と呼ばれる細調整大言語モデル(LLM)を用いた新しいアプローチを提案する。
Draper VDISCデータセットを用いて87%の精度と88%の精度を示した。
- 参考スコア(独自算出の注目度): 2.2020053359163305
- License:
- Abstract: Software security is crucial in any field where breaches can exploit sensitive data, and lead to financial losses. As a result, vulnerability detection becomes an essential part of the software development process. One of the key steps in maintaining software integrity is identifying vulnerabilities in the source code before deployment. A security breach like CWE-476, which stands for NULL pointer dereferences (NPD), is crucial because it can cause software crashes, unpredictable behavior, and security vulnerabilities. In this scientific era, there are several vulnerability checkers, where, previous tools often fall short in analyzing specific feature connections of the source code, which weakens the tools in real-world scenarios. In this study, we propose another novel approach using a fine-tuned Large Language Model (LLM) termed "DeLLNeuN". This model leverages the advantage of various layers to reduce both overfitting and non-linearity, enhancing its performance and reliability. Additionally, this method provides dropout and dimensionality reduction to help streamline the model, making it faster and more efficient. Our model showed 87% accuracy with 88% precision using the Draper VDISC dataset. As software becomes more complex and cyber threats continuously evolve, the need for proactive security measures will keep growing. In this particular case, the proposed model looks promising to use as an early vulnerability checker in software development.
- Abstract(参考訳): ソフトウェアセキュリティは、侵害が機密データを悪用し、金銭的損失につながるあらゆる分野において不可欠である。
その結果、脆弱性検出はソフトウェア開発プロセスの重要な部分となる。
ソフトウェア整合性を維持するための重要なステップの1つは、デプロイ前にソースコードの脆弱性を特定することである。
NULLポインタ参照参照(NPD)の略であるCWE-476のようなセキュリティ違反は、ソフトウェアクラッシュ、予測不能な振る舞い、セキュリティ脆弱性を引き起こす可能性があるため、非常に重要である。
この科学的時代には、いくつかの脆弱性チェッカーがあり、以前のツールはソースコードの特定の機能接続を分析できないことが多いため、現実のシナリオではツールを弱める。
本研究では「DeLLNeuN」と呼ばれる細調整大言語モデル(LLM)を用いた新しい手法を提案する。
このモデルは様々なレイヤの利点を活用し、オーバーフィッティングと非線形性の両方を減らし、性能と信頼性を高める。
さらに、この手法は、モデルの合理化を支援するために、ドロップアウトと次元削減を提供し、より速く、より効率的にする。
Draper VDISCデータセットを用いて87%の精度と88%の精度を示した。
ソフトウェアがより複雑になり、サイバー脅威が継続的に進化するにつれ、積極的なセキュリティ対策の必要性は高まり続ける。
このケースでは、提案されたモデルは、ソフトウェア開発の早期脆弱性チェッカーとして使われることを約束しているように見える。
関連論文リスト
- A Combined Feature Embedding Tools for Multi-Class Software Defect and Identification [2.2020053359163305]
本稿では,GraphCodeBERTとGraph Convolutional Networkを組み合わせた実験手法であるCodeGraphNetを提案する。
この方法は、機能間の複雑な関係をキャプチャし、より正確な脆弱性の識別と分離を可能にする。
決定木とニューラルネットワークのハイブリッドであるDeepTreeモデルは、最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2024-11-26T17:33:02Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
本稿では,脆弱性検出タスクにおける事前学習モデルの性能向上を目的としたデータフロー埋め込み手法を提案する。
具体的には,関数レベルのソースコードからデータフローグラフを解析し,DFGのノード特性として変数のデータ型を使用する。
我々の研究は、DFEPTが事前訓練されたモデルに効果的な脆弱性セマンティック情報を提供し、Devignデータセットで64.97%、Revealデータセットで47.9%のF1スコアを達成できることを示している。
論文 参考訳(メタデータ) (2024-10-24T07:05:07Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - VULNERLIZER: Cross-analysis Between Vulnerabilities and Software
Libraries [4.2755847332268235]
VULNERLIZERは脆弱性とソフトウェアライブラリ間のクロス分析のための新しいフレームワークである。
CVEとソフトウェアライブラリのデータとクラスタリングアルゴリズムを使用して、脆弱性とライブラリ間のリンクを生成する。
トレーニングされたモデルは、75%以上の予測精度に達する。
論文 参考訳(メタデータ) (2023-09-18T10:34:47Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
ソースコードのセキュリティ脆弱性の共通カテゴリのいくつかを効率的に検出することを学ぶディープラーニングモデルを提案する。
モデルは、学習可能なパラメータの少ないコードセマンティクスの正確な理解を構築します。
提案したAIは、ベンチマークされたNIST SARDデータセットから特定のCWEに対して98.40%のF1スコアを達成する。
論文 参考訳(メタデータ) (2021-04-19T11:50:36Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
クラウドのような大規模コンピュータシステムにおける異常や障害は、多くのユーザに影響を与える。
システム情報の主要なトラブルシューティングソースとして,ログデータの異常検出のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-23T09:17:05Z) - V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities [7.906207218788341]
本稿では,Transformer-based learning framework(V2W-BERT)を提案する。
自然言語処理,リンク予測,転送学習のアイデアを用いることで,従来の手法よりも優れる。
ランダムに分割されたデータの予測精度は最大97%、一時分割されたデータの予測精度は最大94%です。
論文 参考訳(メタデータ) (2021-02-23T05:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。