Enhanced LLM-Based Framework for Predicting Null Pointer Dereference in Source Code
- URL: http://arxiv.org/abs/2412.00216v1
- Date: Fri, 29 Nov 2024 19:24:08 GMT
- Title: Enhanced LLM-Based Framework for Predicting Null Pointer Dereference in Source Code
- Authors: Md. Fahim Sultan, Tasmin Karim, Md. Shazzad Hossain Shaon, Mohammad Wardat, Mst Shapna Akter,
- Abstract summary: We propose a novel approach using a fine-tuned Large Language Model (LLM) termed "DeLLNeuN"
Our model showed 87% accuracy with 88% precision using the Draper VDISC dataset.
- Score: 2.2020053359163305
- License:
- Abstract: Software security is crucial in any field where breaches can exploit sensitive data, and lead to financial losses. As a result, vulnerability detection becomes an essential part of the software development process. One of the key steps in maintaining software integrity is identifying vulnerabilities in the source code before deployment. A security breach like CWE-476, which stands for NULL pointer dereferences (NPD), is crucial because it can cause software crashes, unpredictable behavior, and security vulnerabilities. In this scientific era, there are several vulnerability checkers, where, previous tools often fall short in analyzing specific feature connections of the source code, which weakens the tools in real-world scenarios. In this study, we propose another novel approach using a fine-tuned Large Language Model (LLM) termed "DeLLNeuN". This model leverages the advantage of various layers to reduce both overfitting and non-linearity, enhancing its performance and reliability. Additionally, this method provides dropout and dimensionality reduction to help streamline the model, making it faster and more efficient. Our model showed 87% accuracy with 88% precision using the Draper VDISC dataset. As software becomes more complex and cyber threats continuously evolve, the need for proactive security measures will keep growing. In this particular case, the proposed model looks promising to use as an early vulnerability checker in software development.
Related papers
- A Combined Feature Embedding Tools for Multi-Class Software Defect and Identification [2.2020053359163305]
We present CodeGraphNet, an experimental method that combines GraphCodeBERT and Graph Convolutional Network approaches.
This method captures intricate relationships between features, providing for more exact identification and separation of vulnerabilities.
The DeepTree model, which is a hybrid of a Decision Tree and a Neural Network, outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-11-26T17:33:02Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
We propose a data flow embedding technique to enhance the performance of pre-trained models in vulnerability detection tasks.
Specifically, we parse data flow graphs from function-level source code, and use the data type of the variable as the node characteristics of the DFG.
Our research shows that DFEPT can provide effective vulnerability semantic information to pre-trained models, achieving an accuracy of 64.97% on the Devign dataset and an F1-Score of 47.9% on the Reveal dataset.
arXiv Detail & Related papers (2024-10-24T07:05:07Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) has been promoted as a tool to increase transparency and verifiability in software composition.
Current SBOM generation tools often suffer from inaccuracies in identifying components and dependencies.
We propose PIP-sbom, a novel pip-inspired solution that addresses their shortcomings.
arXiv Detail & Related papers (2024-09-10T10:12:37Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - VULNERLIZER: Cross-analysis Between Vulnerabilities and Software
Libraries [4.2755847332268235]
VULNERLIZER is a novel framework for cross-analysis between vulnerabilities and software libraries.
It uses CVE and software library data together with clustering algorithms to generate links between vulnerabilities and libraries.
The trained model reaches a prediction accuracy of 75% or higher.
arXiv Detail & Related papers (2023-09-18T10:34:47Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
We propose a deep learning model that learns to detect some of the common categories of security vulnerabilities in source code efficiently.
The model builds an accurate understanding of code semantics with a lot less learnable parameters.
The proposed AI achieves 98.40% F1-score on specific CWEs from the benchmarked NIST SARD dataset.
arXiv Detail & Related papers (2021-04-19T11:50:36Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities [7.906207218788341]
We present a novel Transformer-based learning framework (V2W-BERT) in this paper.
By using ideas from natural language processing, link prediction and transfer learning, our method outperforms previous approaches.
We achieve up to 97% prediction accuracy for randomly partitioned data and up to 94% prediction accuracy in temporally partitioned data.
arXiv Detail & Related papers (2021-02-23T05:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.