論文の概要: Twisted Convolutional Networks (TCNs): Enhancing Feature Interactions for Non-Spatial Data Classification
- arxiv url: http://arxiv.org/abs/2412.00238v1
- Date: Fri, 29 Nov 2024 20:12:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:08.583681
- Title: Twisted Convolutional Networks (TCNs): Enhancing Feature Interactions for Non-Spatial Data Classification
- Title(参考訳): ツイスト畳み込みネットワーク(TCNs):非空間データ分類のための特徴相互作用の強化
- Authors: Junbo Jacob Lian,
- Abstract要約: ツイスト畳み込みネットワーク(TCN)は、任意の特徴順序と最小空間関係を持つ一次元データを処理するように設計されている。
本稿では,従来のCNN,DeepSets,Transformers,Graph Neural Networks(GNNs)などと比較して,TNアーキテクチャとその機能の組み合わせ戦略について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Twisted Convolutional Networks (TCNs) are introduced as a novel neural network architecture designed to effectively process one-dimensional data with arbitrary feature order and minimal spatial relationships. Unlike traditional Convolutional Neural Networks (CNNs), which excel at handling structured two-dimensional data like images, TCNs reduce dependency on feature order by combining input features in innovative ways to create new representations. By explicitly enhancing feature interactions and employing diverse feature combinations, TCNs generate richer and more informative representations, making them especially effective for classification tasks on datasets with arbitrary feature arrangements. This paper details the TCN architecture and its feature combination strategy, providing a comprehensive comparison with traditional CNNs, DeepSets, Transformers, and Graph Neural Networks (GNNs). Extensive experiments on benchmark datasets demonstrate that TCNs achieve superior performance, particularly in classification scenarios involving one-dimensional data.
- Abstract(参考訳): ツイスト畳み込みネットワーク(TCN)は、任意の特徴順序と最小空間関係で1次元データを効果的に処理するように設計された、新しいニューラルネットワークアーキテクチャとして導入された。
画像のような構造化された2次元データを扱う従来の畳み込みニューラルネットワーク(CNN)とは異なり、TCNは、新しい表現を生成する革新的な方法で入力特徴を組み合わせることで、特徴の順序への依存を減らす。
機能間の相互作用を明示的に拡張し、多様な機能の組み合わせを利用することで、TCNはよりリッチでより情報的な表現を生成し、任意の機能アレンジメントを持つデータセットの分類タスクに特に有効である。
本稿では,従来のCNN,DeepSets,Transformers,Graph Neural Networks (GNNs) と比較し,TNアーキテクチャとその機能の組み合わせ戦略について述べる。
ベンチマークデータセットの大規模な実験は、特に1次元データを含む分類シナリオにおいて、TNが優れたパフォーマンスを達成することを示した。
関連論文リスト
- AdaRC: Mitigating Graph Structure Shifts during Test-Time [66.40525136929398]
テスト時間適応(TTA)は、ソースドメインに再アクセスすることなく、トレーニング済みのモデルをターゲットドメインに適応できる能力によって注目を集めている。
AdaRCは,グラフの構造シフトに効果的かつ効率的な適応を意図した,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T15:15:40Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Interpretable Neural Networks with Random Constructive Algorithm [3.1200894334384954]
本稿では,無作為重み付きニューラルネットワークの不透明なパラメータ化プロセスに取り組むために,空間情報を組み込んだ解釈型ニューラルネットワーク(INN)を提案する。
ネットワーク収束に寄与するノードパラメータを選択するために、候補ノードのプールと関係を確立することで、幾何学的関係戦略を考案する。
論文 参考訳(メタデータ) (2023-07-01T01:07:20Z) - Structure and Performance of Fully Connected Neural Networks: Emerging
Complex Network Properties [0.8484871864277639]
完全連結ニューラルネットワークの構造と性能を解析するために,複素ネットワーク(CN)技術を提案する。
4万のモデルとそれぞれのCNプロパティでデータセットを構築します。
本研究は,完全連結ニューラルネットワークの性能において,CN特性が重要な役割を担っていることを示唆する。
論文 参考訳(メタデータ) (2021-07-29T14:53:52Z) - Latent Code-Based Fusion: A Volterra Neural Network Approach [21.25021807184103]
最近導入されたVolterra Neural Networks(VNN)を用いた深層構造エンコーダを提案する。
提案手法は,cnnベースのオートエンコーダに対して,より頑健な分類性能を持つサンプル複雑性を示す。
論文 参考訳(メタデータ) (2021-04-10T18:29:01Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
我々は、リカレントニューラルネットワーク(RNN)における隠れ状態のモデリングを近似するグラフフィルタフレームワークを開発する。
提案するフレームワークは、複数のマルチウェイシーケンスモデリングタスクを通じて検証され、従来のRNNに対してベンチマークされる。
提案したRGTNは,標準RNNよりも優れるだけでなく,従来のRNNと関連する次元の曲線を緩和できることを示す。
論文 参考訳(メタデータ) (2020-09-18T10:13:36Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - Modeling Dynamic Heterogeneous Network for Link Prediction using
Hierarchical Attention with Temporal RNN [16.362525151483084]
我々はDyHATRと呼ばれる新しい動的ヘテロジニアスネットワーク埋め込み法を提案する。
階層的な注意を使って異質な情報を学習し、進化パターンを捉えるために時間的注意を伴う繰り返しニューラルネットワークを組み込む。
リンク予測のための4つの実世界のデータセットに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-04-01T17:16:47Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network(GCN)は,グラフデータの学習と推論を行う新興技術である。
我々は、GCNの既存の設計がクロスフィーチャをモデリングし、クロスフィーチャが重要であるタスクやデータに対してGCNの効率を損なうことを論じている。
我々は、任意の次交叉特徴を、特徴次元と順序サイズに線形に複雑にモデル化した、クロスフィーチャーグラフ畳み込みという新しい演算子を設計する。
論文 参考訳(メタデータ) (2020-03-05T13:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。