論文の概要: Generating a Low-code Complete Workflow via Task Decomposition and RAG
- arxiv url: http://arxiv.org/abs/2412.00239v1
- Date: Fri, 29 Nov 2024 20:13:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:04.510915
- Title: Generating a Low-code Complete Workflow via Task Decomposition and RAG
- Title(参考訳): タスク分解とRAGによるローコード完全ワークフローの生成
- Authors: Orlando Marquez Ayala, Patrice Béchard,
- Abstract要約: GenAIベースのシステムは、そのスケールと汎用性のために設計が難しい。
我々は、GenAIベースのシステムの設計パターンとして、タスク分解と検索拡張生成の2つのテクニックを定式化した。
これらの2つのパターンがAI開発サイクル全体に影響を与えるため、データセットの生成、モデルトレーニング、モデル評価、デプロイメントフェーズにどのように影響したかを説明します。
- 参考スコア(独自算出の注目度): 0.040964539027092926
- License:
- Abstract: AI technologies are moving rapidly from research to production. With the popularity of Foundation Models (FMs) that generate text, images, and video, AI-based systems are increasing their complexity. Compared to traditional AI-based software, systems employing FMs, or GenAI-based systems, are more difficult to design due to their scale and versatility. This makes it necessary to document best practices, known as design patterns in software engineering, that can be used across GenAI applications. Our first contribution is to formalize two techniques, Task Decomposition and Retrieval-Augmented Generation (RAG), as design patterns for GenAI-based systems. We discuss their trade-offs in terms of software quality attributes and comment on alternative approaches. We recommend to AI practitioners to consider these techniques not only from a scientific perspective but also from the standpoint of desired engineering properties such as flexibility, maintainability, safety, and security. As a second contribution, we describe our industry experience applying Task Decomposition and RAG to build a complex real-world GenAI application for enterprise users: Workflow Generation. The task of generating workflows entails generating a specific plan using data from the system environment, taking as input a user requirement. As these two patterns affect the entire AI development cycle, we explain how they impacted the dataset creation, model training, model evaluation, and deployment phases.
- Abstract(参考訳): AI技術は研究から生産へと急速に移行している。
テキスト、画像、ビデオを生成するファンデーションモデル(FM)の人気が高まり、AIベースのシステムは複雑さを増している。
従来のAIベースのソフトウェアと比較して、FMやGenAIベースのシステムを使用するシステムは、そのスケールと汎用性のために設計が難しい。
これにより、GenAIアプリケーションにまたがって使用できるソフトウェアエンジニアリングにおけるデザインパターンとして知られるベストプラクティスを文書化する必要がある。
我々の最初の貢献は、GenAIベースのシステムの設計パターンとして、タスク分解と検索-拡張生成(RAG)の2つのテクニックを形式化することである。
ソフトウェアの品質特性の観点から彼らのトレードオフについて議論し、代替アプローチについてコメントする。
私たちは、科学的な観点からだけでなく、柔軟性、保守性、安全性、セキュリティといった望ましいエンジニアリング特性の観点からも、これらの技術を検討することをAI実践者に勧めています。
第2のコントリビューションとして、エンタープライズユーザのための複雑な実世界のGenAIアプリケーションを構築するために、タスク分解とRAGを適用した業界経験について説明する。
ワークフローを生成するタスクは、ユーザ要求を入力として、システム環境からのデータを使用して、特定のプランを生成する必要がある。
これらの2つのパターンがAI開発サイクル全体に影響を与えるため、データセットの生成、モデルトレーニング、モデル評価、デプロイメントフェーズにどのように影響したかを説明します。
関連論文リスト
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis [55.390060529534644]
グラフィカルユーザインタフェース(GUI)エージェントのための新しいデータ合成パイプラインであるOS-Genesisを提案する。
事前に定義されたタスクに頼る代わりに、OS-Genesisはエージェントがまず環境を認識し、ステップワイドなインタラクションを実行することを可能にする。
次に、生成された軌道の品質を保証するために軌道報酬モデルを用いる。
論文 参考訳(メタデータ) (2024-12-27T16:21:58Z) - Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design [2.368662284133926]
プロセス・フロー・ダイアグラム(PFD)とプロセス・アンド・インスツルメンテーション・ダイアグラム(PID)は産業プロセスの設計、制御、安全性にとって重要なツールである。
精密かつ規則に準拠した図の作成は、特に自動化とデジタル化の時代において、材料発見から工業生産へのブレークスルーを拡大する上で、依然として重要な課題である。
本稿では,知識獲得と生成を伴う2段階のアプローチを通じて,これらの課題に対処する自律型エージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-08T13:36:42Z) - Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report [3.4632900249241874]
本稿では,PDF文書を主データ源とする検索拡張生成システム(RAG)の開発経験報告について述べる。
RAGアーキテクチャは、Large Language Models (LLM) の生成能力と情報検索の精度を組み合わせたものである。
この研究の実際的な意味は、様々な分野における生成AIシステムの信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-21T12:21:49Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
本稿では,化学・プロセス産業における複雑な問題の解決を目的としたAI駆動型フレームワークであるプロセスエンジニアリングオペレーションアシスタント(PEOA)を紹介する。
このフレームワークはメタエージェントによって構成されたモジュラーアーキテクチャを採用しており、中央コーディネータとして機能している。
その結果、計算の自動化、プロトタイピングの高速化、産業プロセスに対するAIによる意思決定支援におけるフレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-08-23T13:52:47Z) - TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with
Millions of APIs [71.7495056818522]
私たちは、基礎モデルと数百万のAPIを結合してタスク補完を行う、新しいAIエコシステムとしてTaskMatrix.AIを紹介します。
このようなエコシステムを構築するためのビジョンを示し、それぞれの重要なコンポーネントを説明し、このビジョンの実現可能性と次に取り組むべき主な課題の両方を説明するために研究ケースを使用します。
論文 参考訳(メタデータ) (2023-03-29T03:30:38Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Investigating Explainability of Generative AI for Code through
Scenario-based Design [44.44517254181818]
生成AI(GenAI)技術は成熟し、ソフトウェア工学のようなアプリケーションドメインに適用されています。
私たちは43人のソフトウェアエンジニアと9つのワークショップを開催しました。そこでは、最先端のジェネレーティブAIモデルの実例を使って、ユーザの説明可能性のニーズを導き出しました。
我々の研究は、GenAIのコードに対する説明可能性の必要性を探求し、新しいドメインにおけるXAIの技術開発を人間中心のアプローチがいかに促進するかを実証する。
論文 参考訳(メタデータ) (2022-02-10T08:52:39Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
モデルの信号認識性を高めるためのデータ駆動型手法を提案する。
コード複雑性のSE概念とカリキュラム学習のAIテクニックを組み合わせる。
モデル信号認識における最大4.8倍の改善を実現している。
論文 参考訳(メタデータ) (2021-11-10T17:58:18Z) - Towards Productizing AI/ML Models: An Industry Perspective from Data
Scientists [10.27276267081559]
AI/MLモデルから生産可能なAIベースのシステムへの移行は、データサイエンティストとソフトウェアエンジニアの両方にとって課題です。
本稿では,この移行が実践者によってどのように認識されるかを理解するため,コンサルティング会社におけるワークショップの結果を報告する。
論文 参考訳(メタデータ) (2021-03-18T22:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。