論文の概要: Generative AI for Software Architecture. Applications, Trends, Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2503.13310v1
- Date: Mon, 17 Mar 2025 15:49:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:23.418096
- Title: Generative AI for Software Architecture. Applications, Trends, Challenges, and Future Directions
- Title(参考訳): ソフトウェアアーキテクチャのための生成AI - アプリケーション、トレンド、課題、今後の方向性
- Authors: Matteo Esposito, Xiaozhou Li, Sergio Moreschini, Noman Ahmad, Tomas Cerny, Karthik Vaidhyanathan, Valentina Lenarduzzi, Davide Taibi,
- Abstract要約: 我々は、ソフトウェアアーキテクチャにおけるGenAIの使用、合理化、コンテキスト、ユーザビリティ、および将来の課題を体系的に総合することを目指している。
アーキテクチャ決定支援とアーキテクチャ再構築のためのGenAIの導入について検討した。
- 参考スコア(独自算出の注目度): 6.883775050854466
- License:
- Abstract: Context: Generative Artificial Intelligence (GenAI) is transforming much of software development, yet its application in software architecture is still in its infancy, and no prior study has systematically addressed the topic. Aim: We aim to systematically synthesize the use, rationale, contexts, usability, and future challenges of GenAI in software architecture. Method: We performed a multivocal literature review (MLR), analyzing peer-reviewed and gray literature, identifying current practices, models, adoption contexts, and reported challenges, extracting themes via open coding. Results: Our review identified significant adoption of GenAI for architectural decision support and architectural reconstruction. OpenAI GPT models are predominantly applied, and there is consistent use of techniques such as few-shot prompting and retrieved-augmented generation (RAG). GenAI has been applied mostly to initial stages of the Software Development Life Cycle (SDLC), such as Requirements-to-Architecture and Architecture-to-Code. Monolithic and microservice architectures were the dominant targets. However, rigorous testing of GenAI outputs was typically missing from the studies. Among the most frequent challenges are model precision, hallucinations, ethical aspects, privacy issues, lack of architecture-specific datasets, and the absence of sound evaluation frameworks. Conclusions: GenAI shows significant potential in software design, but several challenges remain on its path to greater adoption. Research efforts should target designing general evaluation methodologies, handling ethics and precision, increasing transparency and explainability, and promoting architecture-specific datasets and benchmarks to bridge the gap between theoretical possibilities and practical use.
- Abstract(参考訳): コンテキスト: 生成人工知能(GenAI)はソフトウェア開発の多くを変革していますが、ソフトウェアアーキテクチャにおけるその応用はまだ初期段階であり、そのトピックを体系的に扱う以前の研究はありません。
Aim: 私たちは、ソフトウェアアーキテクチャにおけるGenAIの使用、合理化、コンテキスト、ユーザビリティ、今後の課題を体系的に統合することを目指しています。
方法: マルチボーカル文献レビュー(MLR)を行い, ピアレビューとグレーの文献を分析し, 現行のプラクティス, モデル, 導入状況, 課題の報告, オープンコーディングによるテーマの抽出を行った。
結果: アーキテクチャ決定支援とアーキテクチャ再構築にGenAIの大幅な採用が認められた。
OpenAI GPTモデルは、主に適用されており、少数ショットプロンプトや検索拡張生成(RAG)といった技術が一貫して使用されている。
GenAIはソフトウェア開発ライフサイクル(SDLC:Software Development Life Cycle)の初期段階(Requirements-to-Architecture)やArchitecture-to-Code(Architecture-to-Code)などに主に適用されています。
モノリシックおよびマイクロサービスアーキテクチャが主要なターゲットでした。
しかし、GenAI出力の厳密な検査は典型的には研究から欠落していた。
最も頻繁な課題は、モデル精度、幻覚、倫理的側面、プライバシー問題、アーキテクチャ固有のデータセットの欠如、健全な評価フレームワークの欠如である。
結論: GenAIはソフトウェア設計において大きな可能性を秘めている。
研究は、一般的な評価方法論の設計、倫理と精度の扱い、透明性と説明可能性の向上、理論的可能性と実用性の間のギャップを埋めるために、アーキテクチャ固有のデータセットとベンチマークの促進を目標とすべきである。
関連論文リスト
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - Generating a Low-code Complete Workflow via Task Decomposition and RAG [0.040964539027092926]
GenAIベースのシステムは、そのスケールと汎用性のために設計が難しい。
我々は、GenAIベースのシステムの設計パターンとして、タスク分解と検索拡張生成の2つのテクニックを定式化した。
これらの2つのパターンがAI開発サイクル全体に影響を与えるため、データセットの生成、モデルトレーニング、モデル評価、デプロイメントフェーズにどのように影響したかを説明します。
論文 参考訳(メタデータ) (2024-11-29T20:13:56Z) - Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
画像復元(IR)とは、ノイズ、ぼかし、気象効果などの劣化を除去しながら、画像の視覚的品質を改善する過程である。
従来のIR手法は、一般的に特定の種類の劣化をターゲットとしており、複雑な歪みを伴う現実のシナリオにおいて、その効果を制限している。
オールインワン画像復元(AiOIR)パラダイムが登場し、複数の劣化タイプに順応的に対処する統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-10-19T11:11:09Z) - GenLens: A Systematic Evaluation of Visual GenAI Model Outputs [33.93591473459988]
GenLensは、GenAIモデル出力の体系的評価のために設計されたビジュアル分析インタフェースである。
モデル開発者によるユーザ調査によると、GenLensは、高い満足度で証明されたワークフローを効果的に強化する。
論文 参考訳(メタデータ) (2024-02-06T04:41:06Z) - Generative Artificial Intelligence for Software Engineering -- A
Research Agenda [8.685607624226037]
我々は、GenAI for Software Engineeringの研究アジェンダを開発するために、文献レビューと5ヶ月間のフォーカスグループを実施しました。
この結果から,GenAIを部分的自動化に適用し,すべてのソフトウェア開発活動における意思決定を支援することが可能であることが示唆された。
GenAIを実装する際の一般的な考慮事項は、業界レベルの評価、信頼性と正確性、データアクセシビリティ、透明性、技術に関連する持続可能性といった点である。
論文 参考訳(メタデータ) (2023-10-28T09:14:39Z) - Generative AI in the Construction Industry: Opportunities & Challenges [2.562895371316868]
建設部門におけるジェネレーティブAI(GenAI)導入の機会と課題を調査する研究は、現在進行中である。
本研究は、文献における反映された知覚を掘り下げ、プログラムベースのワードクラウドと周波数分析を用いて産業的知覚を分析する。
本稿では,概念的GenAI実装フレームワークを推奨し,実践的勧告を提供し,今後の研究課題を要約し,GenAIの今後の研究展開を促進するための基礎文献を構築する。
論文 参考訳(メタデータ) (2023-09-19T18:20:49Z) - Navigating the Complexity of Generative AI Adoption in Software
Engineering [6.190511747986327]
ソフトウェア工学における生成人工知能(AI)ツールの採用パターンについて検討した。
個人レベル、技術レベル、社会的レベルの影響要因を分析した。
論文 参考訳(メタデータ) (2023-07-12T11:05:19Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。