論文の概要: Real-Time Metric-Semantic Mapping for Autonomous Navigation in Outdoor Environments
- arxiv url: http://arxiv.org/abs/2412.00291v1
- Date: Sat, 30 Nov 2024 00:05:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:42:53.462971
- Title: Real-Time Metric-Semantic Mapping for Autonomous Navigation in Outdoor Environments
- Title(参考訳): 屋外環境における自律ナビゲーションのためのリアルタイムメトリック・セマンティックマッピング
- Authors: Jianhao Jiao, Ruoyu Geng, Yuanhang Li, Ren Xin, Bowen Yang, Jin Wu, Lujia Wang, Ming Liu, Rui Fan, Dimitrios Kanoulas,
- Abstract要約: 大規模屋外環境のグローバルなメトリセマンティックメッシュマップを生成するオンラインメトリセマンティックマッピングシステムを提案する。
シナリオスケールに関わらず,フレーム処理は7ms未満で,マッピング処理は例外的な速度を実現する。
実世界のナビゲーションシステムにマップを組み込むことにより,大学構内における測地情報に基づく地形評価と自律的なポイント・ツー・ポイントナビゲーションを実現する。
- 参考スコア(独自算出の注目度): 18.7565126823704
- License:
- Abstract: The creation of a metric-semantic map, which encodes human-prior knowledge, represents a high-level abstraction of environments. However, constructing such a map poses challenges related to the fusion of multi-modal sensor data, the attainment of real-time mapping performance, and the preservation of structural and semantic information consistency. In this paper, we introduce an online metric-semantic mapping system that utilizes LiDAR-Visual-Inertial sensing to generate a global metric-semantic mesh map of large-scale outdoor environments. Leveraging GPU acceleration, our mapping process achieves exceptional speed, with frame processing taking less than 7ms, regardless of scenario scale. Furthermore, we seamlessly integrate the resultant map into a real-world navigation system, enabling metric-semantic-based terrain assessment and autonomous point-to-point navigation within a campus environment. Through extensive experiments conducted on both publicly available and self-collected datasets comprising 24 sequences, we demonstrate the effectiveness of our mapping and navigation methodologies. Code has been publicly released: https://github.com/gogojjh/cobra
- Abstract(参考訳): 人間の知識をエンコードするメートル法セマンティックマップの作成は、環境の高レベルな抽象化を表している。
しかし、そのようなマップの構築は、マルチモーダルセンサデータの融合、リアルタイムマッピング性能の達成、構造的および意味的情報の一貫性の維持に関連する課題を提起する。
本稿では,LiDAR-Visual-Inertial Sensorを利用して大規模屋外環境のグローバルなメトリック・セマンティックメッシュマップを生成するオンライン・メトリック・セマンティックマッピングシステムを提案する。
GPUアクセラレーションを活用することで,シナリオスケールに関わらず,フレーム処理が7ミリ秒未満で,極めて高速なマッピングを実現する。
さらに、実世界のナビゲーションシステムに結果マップをシームレスに統合し、メートル法に基づく地形評価と、キャンパス環境内での自律的なポイント・ツー・ポイントナビゲーションを可能にする。
24のシーケンスからなる公開データセットと自己収集データセットの両方で実施された広範囲な実験を通じて、マッピングおよびナビゲーション手法の有効性を実証した。
コードが公開された。 https://github.com/gogojjh/cobra
関連論文リスト
- NavTopo: Leveraging Topological Maps For Autonomous Navigation Of a Mobile Robot [1.0550841723235613]
トポロジマップと2段階の経路計画に基づく完全なナビゲーションパイプラインを提案する。
パイプラインは、入力ポイントクラウドのニューラルネットワーク記述子と2Dプロジェクションをマッチングすることで、グラフにローカライズする。
提案手法は,大規模な室内光相対論的シミュレーション環境でテストし,一般的な計量マッピング手法であるRTAB-MAPに基づく計量地図に基づく手法と比較する。
論文 参考訳(メタデータ) (2024-10-15T10:54:49Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Monocular Localization with Semantics Map for Autonomous Vehicles [8.242967098897408]
低レベルのテクスチャ機能の代わりに安定したセマンティック機能を利用する新しい視覚的セマンティックローカライゼーションアルゴリズムを提案する。
まず、セマンティックマップは、カメラやLiDARセンサーを使用して、グラウンドマーカー、レーンライン、ポールなどのセマンティックオブジェクトを検出してオフラインで構築される。
オンラインの視覚的ローカライゼーションは意味的特徴とマップオブジェクトのデータアソシエーションによって行われる。
論文 参考訳(メタデータ) (2024-06-06T08:12:38Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
本研究では,屋内環境における埋め込みナビゲーションによる意味領域マッピング手法を提案する。
地域識別を実現するために,視覚言語モデルを用いて地図作成のためのシーン情報を提供する。
グローバルなフレームにエゴセントリックなシーン理解を投影することにより、提案手法は各場所の可能な領域ラベル上の分布としてのセマンティックマップを生成する。
論文 参考訳(メタデータ) (2024-03-11T18:09:50Z) - Weakly-Supervised Multi-Granularity Map Learning for Vision-and-Language
Navigation [87.52136927091712]
我々は,ロボットエージェントが言語指導によって記述された経路をたどって,環境の中をナビゲートするよう訓練する,現実的かつ困難な問題に対処する。
高精度かつ効率的なナビゲーションを実現するためには,環境オブジェクトの空間的位置と意味情報の両方を正確に表現した地図を構築することが重要である。
より包括的にオブジェクトを表現するために,オブジェクトの細粒度(色,テクスチャなど)とセマンティッククラスの両方を含む多粒度マップを提案する。
論文 参考訳(メタデータ) (2022-10-14T04:23:27Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
本研究では,大規模自律飛行とリアルタイムセマンティックマッピングを,挑戦的なアンダーキャノピー環境下で実現可能な統合システムを提案する。
我々は、スキャン全体で関連付けられ、木のトランクモデルと同様にロボットのポーズを制約するために使用されるLiDARデータから、木の幹と地面の平面を検出し、モデル化する。
ドリフト補償機構は、プランナー最適性とコントローラ安定性を維持しつつ、セマンティックSLAM出力を用いたドリフトをリアルタイムで最小化するように設計されている。
論文 参考訳(メタデータ) (2021-09-14T07:24:53Z) - Radar-based Automotive Localization using Landmarks in a Multimodal
Sensor Graph-based Approach [0.0]
本稿では,自動車用レーダによる局部化の問題に対処する。
システムは抽象層としてランドマークとオドメトリ情報を使用する。
単一のセマンティックランドマークマップが、すべてのセンサーで使用され、維持される。
論文 参考訳(メタデータ) (2021-04-29T07:35:20Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
近年、古典的占有グリッドマップのアプローチが動的占有グリッドマップに拡張されている。
本稿では,従来のアプローチのさらなる発展について述べる。
複数のレーダセンサのデータを融合し、グリッドベースの物体追跡・マッピング手法を適用する。
論文 参考訳(メタデータ) (2020-08-09T09:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。