論文の概要: Aligning LLM+PDDL Symbolic Plans with Human Objective Specifications through Evolutionary Algorithm Guidance
- arxiv url: http://arxiv.org/abs/2412.00300v2
- Date: Thu, 09 Oct 2025 16:26:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 15:34:28.320958
- Title: Aligning LLM+PDDL Symbolic Plans with Human Objective Specifications through Evolutionary Algorithm Guidance
- Title(参考訳): 進化的アルゴリズム誘導による人間目的仕様付きLCM+PDDL記号計画の調整
- Authors: Owen Burns, Dana Hughes, Katia Sycara,
- Abstract要約: 我々は,記号的目標仕様の集団を生成するための進化的アプローチを開発する。
本研究は,海上災害復旧作業における原型仕様の収集に対するアプローチを評価するものである。
- 参考スコア(独自算出の注目度): 1.8974443450771445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated planning using a symbolic planning language, such as PDDL, is a general approach to producing optimal plans to achieve a stated goal. However, creating suitable machine understandable descriptions of the planning domain, problem, and goal requires expertise in the planning language, limiting the utility of these tools for non-expert humans. Recent efforts have explored utilizing a symbolic planner in conjunction with a large language model to generate plans from natural language descriptions given by a non-expert human (LLM+PDDL). Our approach performs initial translation of goal specifications to a set of PDDL goal constraints using an LLM; such translations often result in imprecise symbolic specifications, which are difficult to validate directly. We account for this using an evolutionary approach to generate a population of symbolic goal specifications with slight differences from the initial translation, and utilize a trained LSTM-based validation model to assess whether each induced plan in the population adheres to the natural language specifications. We evaluate our approach on a collection of prototypical specifications in a notional naval disaster recovery task, and demonstrate that our evolutionary approach improve adherence of generated plans to natural language specifications when compared to plans generated using only LLM translations. The code for our method can be found at https://github.com/owenonline/PlanCritic.
- Abstract(参考訳): PDDLのような記号的計画言語を用いた自動計画法は,目標達成のために最適な計画を作成するための一般的な手法である。
しかしながら、計画領域、問題、目標に関する適切なマシン理解可能な記述を作成するには、計画言語における専門知識が必要であり、これらのツールの非専門家に対する有用性は制限される。
近年,非専門的人間(LLM+PDDL)による自然言語記述から計画を生成するために,大規模言語モデルと協調して記号プランナーを活用する研究が進められている。
提案手法は,LDMを用いて目標仕様をPDDL目標制約のセットに初期翻訳する。
本稿では,初期翻訳とわずかに異なる記号的目標仕様の集団を生成するための進化的アプローチを用いてこれを説明し,学習されたLSTMに基づく検証モデルを用いて,各集団の誘導計画が自然言語仕様に適合するかどうかを評価する。
本研究は, 海上災害復旧作業における原型仕様の収集に対するアプローチを検証し, LLM翻訳のみを用いて生成した計画と比較して, 生成した計画の自然言語仕様への順応性を向上させることを実証する。
私たちのメソッドのコードはhttps://github.com/owenonline/PlanCritic.orgで参照できます。
関連論文リスト
- Plan Your Travel and Travel with Your Plan: Wide-Horizon Planning and Evaluation via LLM [58.50687282180444]
旅行計画は、多様な現実世界の情報とユーザの好みを統合する必要がある複雑な作業である。
我々はこれをL3$プランニング問題として定式化し、長いコンテキスト、長い命令、長い出力を強調する。
計画の多面的側面 (MAoP) を導入し, LLM が複雑な計画問題の解決のために広義の思考を行えるようにした。
論文 参考訳(メタデータ) (2025-06-14T09:37:59Z) - Vaiage: A Multi-Agent Solution to Personalized Travel Planning [0.27309692684728615]
プランニングトリップは、ユーザの好みの相反、動的な外部情報、多段階の時間空間最適化を含む認知的に集中的なタスクである。
我々のアプローチであるVayageは、目標条件付きレコメンデータとシーケンシャルプランナの両方として機能する、大規模言語モデル(LLM)を中心に構築されたグラフ構造化マルチエージェントフレームワークを通じて、これらの課題に対処します。
自然言語のインタラクション、構造化ツールの使用、マップベースのフィードバックループを通じて、Vaiageは、象徴的推論と会話的理解の両方に根ざした適応的、説明可能、エンドツーエンドの旅行計画を可能にする。
論文 参考訳(メタデータ) (2025-05-16T06:54:52Z) - HyperTree Planning: Enhancing LLM Reasoning via Hierarchical Thinking [109.09735490692202]
提案するHyperTree Planning(HTP)は,高木構造プランニングアウトラインを構成する新しい推論パラダイムである。
実験ではHTPの有効性を実証し、Gemini-1.5-ProによるTravelPlannerベンチマークで最先端の精度を実現し、o1-previewよりも3.6倍の性能向上を実現した。
論文 参考訳(メタデータ) (2025-05-05T02:38:58Z) - Optimal Integrated Task and Path Planning and Its Application to
Multi-Robot Pickup and Delivery [10.530860023128406]
本稿では,最適なタスクプランナと最適なパスプランナを組み合わせた,汎用的なマルチロボット計画機構を提案する。
統合プランナーは、タスクプランナーとパスプランナーの相互作用を通じて、ロボットに対して最適な衝突のない軌道を生成する。
論文 参考訳(メタデータ) (2024-03-02T17:48:40Z) - Simple Hierarchical Planning with Diffusion [54.48129192534653]
拡散に基づく生成法は、オフラインデータセットによる軌跡のモデリングに有効であることが証明されている。
階層型および拡散型プランニングの利点を組み合わせた高速かつ驚くほど効果的な計画手法である階層型ディフューザを導入する。
我々のモデルは、より高いレベルで「ジャンピー」な計画戦略を採用しており、より大きな受容場を持つことができるが、計算コストは低い。
論文 参考訳(メタデータ) (2024-01-05T05:28:40Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
本稿では,タスクのシーケンシング,割り当て,実行を最適化するタスクと動作計画の組み合わせを提案する。
このフレームワークはタスクとアクションの分離に依存しており、アクションはシンボル的タスクの幾何学的実現の可能な1つの可能性である。
ロボットアームと人間の作業員がモザイクを組み立てる共同製造シナリオにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-27T01:50:45Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
本稿では,象徴的タスク計画と機械学習アプローチのギャップを埋めることを目的としたフレームワークを提案する。
大規模言語モデル(LLM)を計画ドメイン定義言語(PDDL)と互換性のあるニューロシンボリックタスクプランナーに訓練する根拠
選択されたドメインにおける予備的な結果から, (i) テストデータセットの95.5%の問題を1,000個のサンプルで解決し, (ii) 従来のシンボルプランナーよりも最大13.5%短いプランを作成し, (iii) 計画の可利用性の平均待ち時間を61.4%まで削減する。
論文 参考訳(メタデータ) (2023-03-01T11:54:22Z) - Sequence-Based Plan Feasibility Prediction for Efficient Task and Motion
Planning [36.300564378022315]
本稿では,移動環境における移動操作問題を解決するための学習可能なタスク・アンド・モーション・プランニング(TAMP)アルゴリズムを提案する。
本アルゴリズムのコアは,タスク計画,目標,初期状態を考慮したトランスフォーマーに基づく新しい学習手法であるPIGINetであり,タスク計画に関連する運動軌跡の発見確率を予測する。
論文 参考訳(メタデータ) (2022-11-03T04:12:04Z) - Robust Hierarchical Planning with Policy Delegation [6.1678491628787455]
本稿では,デリゲートの原理に基づく階層計画のための新しいフレームワークとアルゴリズムを提案する。
このプランニング手法は、様々な領域における古典的なプランニングと強化学習技術に対して、実験的に非常に競争力があることを示す。
論文 参考訳(メタデータ) (2020-10-25T04:36:20Z) - Bottom-up mechanism and improved contract net protocol for the dynamic
task planning of heterogeneous Earth observation resources [61.75759893720484]
地球観測資源は、災害救助、被害評価、関連する領域においてますます不可欠になりつつある。
観測要求の変更や悪天候の発生、資源の失敗など、予測できない多くの要因は、スケジュールされた観測計画が実行不可能になる可能性がある。
不均質な地球観測資源の動的タスク計画を容易にするため、ボトムアップ分散協調フレームワークと改良された契約網を提案する。
論文 参考訳(メタデータ) (2020-07-13T03:51:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。