論文の概要: Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints
- arxiv url: http://arxiv.org/abs/2312.17605v1
- Date: Fri, 29 Dec 2023 14:00:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-02 09:50:17.005531
- Title: Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints
- Title(参考訳): 物体中心の運動制約の抽象化を用いた統合タスクと運動計画
- Authors: Alejandro Agostini, Justus Piater
- Abstract要約: 本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
- 参考スコア(独自算出の注目度): 56.283944756315066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In task and motion planning (TAMP), the ambiguity and underdetermination of
abstract descriptions used by task planning methods make it difficult to
characterize physical constraints needed to successfully execute a task. The
usual approach is to overlook such constraints at task planning level and to
implement expensive sub-symbolic geometric reasoning techniques that perform
multiple calls on unfeasible actions, plan corrections, and re-planning until a
feasible solution is found. We propose an alternative TAMP approach that
unifies task and motion planning into a single heuristic search. Our approach
is based on an object-centric abstraction of motion constraints that permits
leveraging the computational efficiency of off-the-shelf AI heuristic search to
yield physically feasible plans. These plans can be directly transformed into
object and motion parameters for task execution without the need of intensive
sub-symbolic geometric reasoning.
- Abstract(参考訳): タスク・アンド・モーション・プランニング(tamp)では、タスク計画法で使用される抽象記述の曖昧さと過小決定は、タスクを成功させるために必要な物理的制約を特徴付けるのを困難にしている。
通常のアプローチは、タスク計画レベルでそのような制約を見落とし、実現不可能な動作、計画修正、そして実現可能な解決策が見つかるまで再計画を行う、高価な準記号幾何学的推論手法を実装することである。
本稿では,タスクとモーションプランニングを一つのヒューリスティック検索に統一するTAMP手法を提案する。
提案手法は,既成のAIヒューリスティックサーチの計算効率を活用し,物理的に実現可能な計画を実現するための,オブジェクト中心の動作制約の抽象化に基づく。
これらの計画は、集中的なサブシンボリックな幾何学的推論を必要とせずに、タスク実行のためのオブジェクトやモーションパラメータに直接変換することができる。
関連論文リスト
- A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
従来のタスク・アンド・モーション・プランニング(TAMP)アプローチは、シンボル的タスク・プランニングと連続的なモーション・ジェネレーションを結びつける手作業によるインタフェースに依存している。
本稿では,ドメインに依存しないインターフェースを備えたLarge Language Model (LLM) ベースの TAMP フレームワーク LLM3 を提案する。
具体的には、事前学習したLLMの強力な推論と計画能力を活用して、シンボル的なアクションシーケンスを提案し、動作計画のための連続的なアクションパラメータを選択する。
論文 参考訳(メタデータ) (2024-03-18T08:03:47Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
本稿では,タスクのシーケンシング,割り当て,実行を最適化するタスクと動作計画の組み合わせを提案する。
このフレームワークはタスクとアクションの分離に依存しており、アクションはシンボル的タスクの幾何学的実現の可能な1つの可能性である。
ロボットアームと人間の作業員がモザイクを組み立てる共同製造シナリオにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-27T01:50:45Z) - Learning to Search in Task and Motion Planning with Streams [20.003445874753233]
ロボット工学におけるタスク計画問題と動作計画問題は、個別のタスク変数に対するシンボリック計画と、連続状態および動作変数に対する動作最適化を組み合わせたものである。
対象と事実の集合を最優先的に拡張する幾何学的情報に基づく記号プランナを提案する。
ブロックスタッキング操作タスクにおいて,このアルゴリズムを7DOFロボットアームに適用する。
論文 参考訳(メタデータ) (2021-11-25T15:58:31Z) - Task Allocation for Multi-Robot Task and Motion Planning: a case for
Object Picking in Cluttered Workspaces [1.3535770763481902]
統合型マルチロボットタスクとモーションプランニング手法を提案する。
未知のオブジェクトの再配列を含むタスクを処理できる。
2つのフランカエミカマニピュレータのシミュレーション実験で実験を行った。
論文 参考訳(メタデータ) (2021-10-08T12:36:43Z) - Anytime Stochastic Task and Motion Policies [12.72186877599064]
本稿では,タスクと動作計画を統合するための新しい手法を提案する。
我々のアルゴリズムは確率論的に完全であり、いつでも実現可能な解ポリシーを計算できる。
論文 参考訳(メタデータ) (2021-08-28T00:23:39Z) - Task Scoping: Generating Task-Specific Abstractions for Planning [19.411900372400183]
オープンスコープの世界モデルを用いた特定のタスクの計画は、計算的に難解である。
本稿では,初期条件,目標条件,タスクの遷移力学構造に関する知識を活用するタスクスコーピングを提案する。
タスクスコーピングは、関連要因やアクションを決して削除せず、その計算複雑性を特徴づけ、特に有用である計画上の問題を特徴づける。
論文 参考訳(メタデータ) (2020-10-17T21:19:25Z) - Integrated Task and Motion Planning [30.415785183398334]
多数の物体を含む環境下で動作するロボットの計画はタスク・アンド・モーション・プランニング(TAMP)として知られている。
TAMP問題には、離散的なタスク計画、離散連続的な数学的計画、連続的な動き計画といった要素が含まれており、これらの分野のどれからも効果的に対処することはできない。
本稿では、連続空間のサブプロブレムを解くための手法と、探索の離散的かつ連続的なコンポーネントを統合する手法の観点から、TAMP問題のクラスを定義し、解法を特徴付ける。
論文 参考訳(メタデータ) (2020-10-02T16:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。