論文の概要: Raw Audio Classification with Cosine Convolutional Neural Network (CosCovNN)
- arxiv url: http://arxiv.org/abs/2412.00312v1
- Date: Sat, 30 Nov 2024 01:39:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:57.072098
- Title: Raw Audio Classification with Cosine Convolutional Neural Network (CosCovNN)
- Title(参考訳): コサイン畳み込みニューラルネットワーク(CosCovNN)を用いた生音声分類
- Authors: Kazi Nazmul Haque, Rajib Rana, Tasnim Jarin, Bjorn W. Schuller Jr,
- Abstract要約: 本研究では,従来のCNNフィルタをCosineフィルタに置き換えたCosine Convolutional Neural Network(CosCovNN)を提案する。
CosCovNNは、同等のCNNアーキテクチャの精度を約77%のパラメータで上回っている。
その結果,コサインフィルタは生音声分類におけるCNNの効率と精度を大幅に向上させることができることがわかった。
- 参考スコア(独自算出の注目度): 1.0237120900821557
- License:
- Abstract: This study explores the field of audio classification from raw waveform using Convolutional Neural Networks (CNNs), a method that eliminates the need for extracting specialised features in the pre-processing step. Unlike recent trends in literature, which often focuses on designing frontends or filters for only the initial layers of CNNs, our research introduces the Cosine Convolutional Neural Network (CosCovNN) replacing the traditional CNN filters with Cosine filters. The CosCovNN surpasses the accuracy of the equivalent CNN architectures with approximately $77\%$ less parameters. Our research further progresses with the development of an augmented CosCovNN named Vector Quantised Cosine Convolutional Neural Network with Memory (VQCCM), incorporating a memory and vector quantisation layer VQCCM achieves state-of-the-art (SOTA) performance across five different datasets in comparison with existing literature. Our findings show that cosine filters can greatly improve the efficiency and accuracy of CNNs in raw audio classification.
- Abstract(参考訳): 本研究では,畳み込みニューラルネットワーク(CNN)を用いた生波形からの音声分類の分野について検討する。
文献の最近のトレンドは、しばしばCNNの初期層のみのためのフロントエンドやフィルタの設計に重点を置いているが、我々の研究では、従来のCNNフィルタをCosineフィルタに置き換えるCosine Convolutional Neural Network(CosCovNN)を紹介している。
CosCovNNは、同等のCNNアーキテクチャの精度を約7,7\%のパラメータで上回っている。
我々の研究は、Vector Quantized Cosine Convolutional Neural Network with Memory (VQCCM) と呼ばれる拡張CosCovNNの開発によりさらに進展し、メモリとベクトル量子化層VQCCMを組み込むことで、既存の文献と比較して5つの異なるデータセットでSOTA(State-of-the-art)性能を実現する。
その結果,コサインフィルタは生音声分類におけるCNNの効率と精度を大幅に向上させることができることがわかった。
関連論文リスト
- Benchmarking Quantum Convolutional Neural Networks for Signal Classification in Simulated Gamma-Ray Burst Detection [29.259008600842517]
本研究は,ガンマ線バースト(GRB)に似た信号の同定に量子畳み込みニューラルネットワーク(QCNN)を用いたことを評価する。
量子シミュレータでトレーニングしたQCNNを用いて,Qiskitフレームワークを用いたハイブリッド量子古典機械学習手法を実装した。
QCNNは時系列データセット上で堅牢な性能を示し,高い精度でGRB信号の検出に成功した。
論文 参考訳(メタデータ) (2025-01-28T16:07:12Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
部分オフロードにおける効果的な意味抽出と圧縮のための新しい意味圧縮手法であるオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
セマンティックエンコーダでは、CNNのチャネルアテンション機構に基づく特徴圧縮モジュールを導入し、最も情報性の高い特徴を選択して中間データを圧縮する。
セマンティックデコーダでは、受信した圧縮データから学習して中間データを再構築し、精度を向上させる軽量デコーダを設計する。
論文 参考訳(メタデータ) (2024-01-19T15:19:47Z) - Optimizing Convolutional Neural Network Architecture [0.0]
畳み込みニューラルネットワーク(CNN)は、音声認識や自然言語処理、コンピュータビジョンといった課題に直面するために広く使われている。
我々は,プルーニングと知識蒸留に基づく新しいCNN最適化と構築手法であるOCNNAを提案する。
提案手法は,20以上の畳み込みニューラルネットワークの単純化アルゴリズムと比較し,優れた結果を得た。
論文 参考訳(メタデータ) (2023-12-17T12:23:11Z) - A Quantum Convolutional Neural Network Approach for Object Detection and
Classification [0.0]
QCNNの時間と精度は、異なる条件下での古典的なCNNやANNモデルと比較される。
この分析により、QCNNは、特定のアプリケーションにおける精度と効率の点で、古典的なCNNとANNのモデルより優れている可能性が示されている。
論文 参考訳(メタデータ) (2023-07-17T02:38:04Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
本稿では,デバイスエッジ共振器におけるCNN推論の計算負荷について検討する。
エンドデバイスにおける効率的な特徴抽出のための新しいオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
実験の結果、AECNNは中間データを約4%の精度で256倍圧縮できることがわかった。
論文 参考訳(メタデータ) (2022-11-24T18:10:01Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
決定フィードバック等化器(DFE)に似たフィードバック構造を持つSNNベースの等化器を提案する。
提案手法は,3種類の模範チャネルに対して,従来の線形等化器よりも明らかに優れていることを示す。
決定フィードバック構造を持つSNNは、競合エネルギー効率の良いトランシーバへのパスを可能にする。
論文 参考訳(メタデータ) (2022-11-09T09:19:15Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
遺伝的U-Netは、より優れた網膜血管セグメンテーションを実現することができるが、アーキテクチャに基づくパラメータが少ないU字型畳み込みニューラルネットワーク(CNN)を生成するために提案されている。
実験の結果,提案手法を用いて得られたアーキテクチャは,元のU-Netパラメータの1%以下で優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-29T13:31:36Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
我々は、計算複雑性を低減し、ニューラルネットワーク処理を高速化する畳み込みニューラルネットワーク変換を考える。
畳み込みニューラルネットワーク(CNN)の使用は、計算的に要求が多すぎるにもかかわらず、画像認識の標準的なアプローチである。
論文 参考訳(メタデータ) (2020-02-18T17:42:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。