論文の概要: A Quantum Convolutional Neural Network Approach for Object Detection and
Classification
- arxiv url: http://arxiv.org/abs/2307.08204v1
- Date: Mon, 17 Jul 2023 02:38:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 15:03:06.218486
- Title: A Quantum Convolutional Neural Network Approach for Object Detection and
Classification
- Title(参考訳): 物体検出と分類のための量子畳み込みニューラルネットワークアプローチ
- Authors: Gowri Namratha Meedinti, Kandukuri Sai Srirekha and Radhakrishnan
Delhibabu
- Abstract要約: QCNNの時間と精度は、異なる条件下での古典的なCNNやANNモデルと比較される。
この分析により、QCNNは、特定のアプリケーションにおける精度と効率の点で、古典的なCNNとANNのモデルより優れている可能性が示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive evaluation of the potential of Quantum
Convolutional Neural Networks (QCNNs) in comparison to classical Convolutional
Neural Networks (CNNs) and Artificial / Classical Neural Network (ANN) models.
With the increasing amount of data, utilizing computing methods like CNN in
real-time has become challenging. QCNNs overcome this challenge by utilizing
qubits to represent data in a quantum environment and applying CNN structures
to quantum computers. The time and accuracy of QCNNs are compared with
classical CNNs and ANN models under different conditions such as batch size and
input size. The maximum complexity level that QCNNs can handle in terms of
these parameters is also investigated. The analysis shows that QCNNs have the
potential to outperform both classical CNNs and ANN models in terms of accuracy
and efficiency for certain applications, demonstrating their promise as a
powerful tool in the field of machine learning.
- Abstract(参考訳): 本稿では,量子畳み込みニューラルネットワーク(qcnns)のポテンシャルを,古典畳み込みニューラルネットワーク(cnns)および人工/古典ニューラルネットワーク(ann)モデルと比較して包括的に評価する。
データ量の増加に伴い、cnnのような計算手法をリアルタイムに活用することが困難になっている。
qcnnsはこの課題を克服し、量子ビットを利用して量子環境でデータを表現し、cnn構造を量子コンピュータに適用する。
QCNNの時間と精度は、バッチサイズや入力サイズといった異なる条件下での古典的なCNNやANNモデルと比較される。
これらのパラメータの観点からQCNNが扱える最大複雑性レベルについても検討した。
この分析によると、QCNNは、特定のアプリケーションの正確性と効率の観点から、古典的なCNNとANNモデルの両方を上回り、機械学習分野における強力なツールとしての彼らの約束を証明している。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Impact of Data Augmentation on QCNNs [1.1510009152620664]
量子畳み込みニューラルネットワーク(QCNN)は,量子機構を用いてCNNの新たな一般化として提案される。
本稿では,CNN と QCNN を比較し,一般的に使用されている3つのデータセットの損失と予測精度をテストする。
論文 参考訳(メタデータ) (2023-12-01T05:28:19Z) - Quantum Recurrent Neural Networks for Sequential Learning [11.133759363113867]
近いうちに量子優位性のあるアプリケーションを見つけるために,新しい種類の量子リカレントニューラルネットワーク(QRNN)を提案する。
我々のQRNNは、量子デバイスのコヒーレント時間に関してアルゴリズムの要求を大幅に削減できる、停滞した方法でQRBを積み重ねることによって構築されます。
数値実験により,我々のQRNNは古典的RNNと最先端QNNモデルに対する予測(分類)精度が向上し,逐次学習が可能となった。
論文 参考訳(メタデータ) (2023-02-07T04:04:39Z) - Scalable Quantum Convolutional Neural Networks [12.261689483681145]
我々は、スケーラブル量子畳み込みニューラルネットワーク(sQCNN)と呼ばれる量子ニューラルネットワーク(QCNN)の新バージョンを提案する。
さらに、QCの忠実度を用いて、sQCNNの性能を最大化する逆忠実度トレーニング(RF-Train)と呼ばれるsQCNNトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T02:07:00Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
古典データ分類のための完全パラメータ化量子畳み込みニューラルネットワーク(QCNN)をベンチマークする。
本稿では,CNNにインスパイアされた量子ニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T06:48:34Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
特徴抽出のための量子回路エンコーダからなる量子畳み込みニューラルネットワーク(QCNN)を構築した。
入力音声はまず、Mel-spectrogramを抽出するために量子コンピューティングサーバにアップストリームされる。
対応する畳み込み特徴は、ランダムパラメータを持つ量子回路アルゴリズムを用いて符号化される。
符号化された機能は、最終認識のためにローカルRNNモデルにダウンストリームされる。
論文 参考訳(メタデータ) (2020-10-26T03:36:01Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。