Vision Technologies with Applications in Traffic Surveillance Systems: A Holistic Survey
- URL: http://arxiv.org/abs/2412.00348v1
- Date: Sat, 30 Nov 2024 04:17:56 GMT
- Title: Vision Technologies with Applications in Traffic Surveillance Systems: A Holistic Survey
- Authors: Wei Zhou, Lei Zhao, Runyu Zhang, Yifan Cui, Hongpu Huang, Kun Qie, Chen Wang,
- Abstract summary: Traffic Surveillance Systems (TSS) have become increasingly crucial in modern intelligent transportation systems.
This paper presents a systematic review of vision-based technologies in TSS.
We examine both low-level and high-level perception tasks.
- Score: 11.42504047904665
- License:
- Abstract: Traffic Surveillance Systems (TSS) have become increasingly crucial in modern intelligent transportation systems, with vision-based technologies playing a central role for scene perception and understanding. While existing surveys typically focus on isolated aspects of TSS, a comprehensive analysis bridging low-level and high-level perception tasks, particularly considering emerging technologies, remains lacking. This paper presents a systematic review of vision-based technologies in TSS, examining both low-level perception tasks (object detection, classification, and tracking) and high-level perception applications (parameter estimation, anomaly detection, and behavior understanding). Specifically, we first provide a detailed methodological categorization and comprehensive performance evaluation for each task. Our investigation reveals five fundamental limitations in current TSS: perceptual data degradation in complex scenarios, data-driven learning constraints, semantic understanding gaps, sensing coverage limitations and computational resource demands. To address these challenges, we systematically analyze five categories of potential solutions: advanced perception enhancement, efficient learning paradigms, knowledge-enhanced understanding, cooperative sensing frameworks and efficient computing frameworks. Furthermore, we evaluate the transformative potential of foundation models in TSS, demonstrating their unique capabilities in zero-shot learning, semantic understanding, and scene generation. This review provides a unified framework bridging low-level and high-level perception tasks, systematically analyzes current limitations and solutions, and presents a structured roadmap for integrating emerging technologies, particularly foundation models, to enhance TSS capabilities.
Related papers
- LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
Large Language Models (LLMs) are emerging as transformative tools for software vulnerability detection.
This paper provides a detailed survey of LLMs in vulnerability detection.
We address challenges such as cross-language vulnerability detection, multimodal data integration, and repository-level analysis.
arXiv Detail & Related papers (2025-02-10T21:33:38Z) - Benchmarking Image Perturbations for Testing Automated Driving Assistance Systems [1.9526430269580959]
Advanced Driver Assistance Systems (ADAS) based on deep neural networks (DNNs) are widely used in autonomous vehicles for critical perception tasks.
These systems are highly sensitive to input variations, such as noise and changes in lighting, which can compromise their effectiveness and potentially lead to safety-critical failures.
This study offers a comprehensive empirical evaluation of image perturbations to validate and improve the robustness and generalization of ADAS perception systems.
arXiv Detail & Related papers (2025-01-21T16:40:44Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors.
This paper aims to conduct a comprehensive review and analysis of object detectors in open environments.
We propose a framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes.
arXiv Detail & Related papers (2024-03-24T19:32:39Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
We identify and characterize the emerging area of representation engineering (RepE)
RepE places population-level representations, rather than neurons or circuits, at the center of analysis.
We showcase how these methods can provide traction on a wide range of safety-relevant problems.
arXiv Detail & Related papers (2023-10-02T17:59:07Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - SLAM for Visually Impaired People: a Survey [18.839307761493174]
We present the first systematic literature review of 54 recent studies on SLAM-based solutions for blind and visually impaired people.
We discuss the advantages and limitations of these techniques for blind and visually impaired navigation.
Our analysis also evaluates the effectiveness of these SLAM-based solutions in real-world scenarios and user satisfaction.
arXiv Detail & Related papers (2022-12-09T09:45:43Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
We propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme.
The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7%.
arXiv Detail & Related papers (2022-06-20T10:05:38Z) - Infrastructure-Based Object Detection and Tracking for Cooperative
Driving Automation: A Survey [16.20885642028316]
Infrastructure-based object detection and tracking systems can enhance the perception capability for connected vehicles.
Discussions conducted to point out current opportunities, open problems, and anticipated future trends.
arXiv Detail & Related papers (2022-01-28T00:55:24Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z) - LSM: Learning Subspace Minimization for Low-level Vision [78.27774638569218]
We replace the regularization term with a learnable subspace constraint, and preserve the data term to exploit domain knowledge.
This learning subspace minimization (LSM) framework unifies the network structures and the parameters for many low-level vision tasks.
We demonstrate our LSM framework on four low-level tasks including interactive image segmentation, video segmentation, stereo matching, and optical flow, and validate the network on various datasets.
arXiv Detail & Related papers (2020-04-20T10:49:38Z) - DEEVA: A Deep Learning and IoT Based Computer Vision System to Address
Safety and Security of Production Sites in Energy Industry [0.0]
This paper tackles various computer vision related problems such as scene classification, object detection in scenes, semantic segmentation, scene captioning etc.
We developed Deep ExxonMobil Eye for Video Analysis (DEEVA) package to handle scene classification, object detection, semantic segmentation and captioning of scenes.
The results reveal that transfer learning with the RetinaNet object detector is able to detect the presence of workers, different types of vehicles/construction equipment, safety related objects at a high level of accuracy (above 90%)
arXiv Detail & Related papers (2020-03-02T21:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.