DogLayout: Denoising Diffusion GAN for Discrete and Continuous Layout Generation
- URL: http://arxiv.org/abs/2412.00381v1
- Date: Sat, 30 Nov 2024 07:12:39 GMT
- Title: DogLayout: Denoising Diffusion GAN for Discrete and Continuous Layout Generation
- Authors: Zhaoxing Gan, Guangnan Ye,
- Abstract summary: We present textbfDog (textbfDentextbfoising textbfGAN textbf textbf model), which integrates a diffusion process into GANs to enable the generation of discrete label data.<n>Experiments demonstrate that Dog considerably reduces sampling costs by up to 175 times and cuts overlap from 16.43 to 9.59 compared to existing diffusion models.
- Score: 0.6138671548064356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Layout Generation aims to synthesize plausible arrangements from given elements. Currently, the predominant methods in layout generation are Generative Adversarial Networks (GANs) and diffusion models, each presenting its own set of challenges. GANs typically struggle with handling discrete data due to their requirement for differentiable generated samples and have historically circumvented the direct generation of discrete labels by treating them as fixed conditions. Conversely, diffusion-based models, despite achieving state-of-the-art performance across several metrics, require extensive sampling steps which lead to significant time costs. To address these limitations, we propose \textbf{DogLayout} (\textbf{D}en\textbf{o}ising Diffusion \textbf{G}AN \textbf{Layout} model), which integrates a diffusion process into GANs to enable the generation of discrete label data and significantly reduce diffusion's sampling time. Experiments demonstrate that DogLayout considerably reduces sampling costs by up to 175 times and cuts overlap from 16.43 to 9.59 compared to existing diffusion models, while also surpassing GAN based and other layout methods. Code is available at https://github.com/deadsmither5/DogLayout.
Related papers
- Generalized Interpolating Discrete Diffusion [65.74168524007484]
Masked diffusion is a popular choice due to its simplicity and effectiveness.
We derive the theoretical backbone of a family of general interpolating discrete diffusion processes.
Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise.
arXiv Detail & Related papers (2025-03-06T14:30:55Z) - Towards Aligned Layout Generation via Diffusion Model with Aesthetic Constraints [53.66698106829144]
We propose a unified model to handle a broad range of layout generation tasks.
The model is based on continuous diffusion models.
Experiment results show that LACE produces high-quality layouts.
arXiv Detail & Related papers (2024-02-07T11:12:41Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention.
DDPMs generate high-quality samples from complex data distributions by defining an inverse process.
Unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable.
In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM)
arXiv Detail & Related papers (2023-05-25T17:25:14Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - LayoutDiffusion: Improving Graphic Layout Generation by Discrete
Diffusion Probabilistic Models [50.73105631853759]
We present a novel generative model named LayoutDiffusion for automatic layout generation.
It learns to reverse a mild forward process, in which layouts become increasingly chaotic with the growth of forward steps.
It enables two conditional layout generation tasks in a plug-and-play manner without re-training and achieves better performance than existing methods.
arXiv Detail & Related papers (2023-03-21T04:41:02Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - Unite and Conquer: Plug & Play Multi-Modal Synthesis using Diffusion
Models [54.1843419649895]
We propose a solution based on denoising diffusion probabilistic models (DDPMs)
Our motivation for choosing diffusion models over other generative models comes from the flexible internal structure of diffusion models.
Our method can unite multiple diffusion models trained on multiple sub-tasks and conquer the combined task.
arXiv Detail & Related papers (2022-12-01T18:59:55Z) - Diffusion-GAN: Training GANs with Diffusion [135.24433011977874]
Generative adversarial networks (GANs) are challenging to train stably.
We propose Diffusion-GAN, a novel GAN framework that leverages a forward diffusion chain to generate instance noise.
We show that Diffusion-GAN can produce more realistic images with higher stability and data efficiency than state-of-the-art GANs.
arXiv Detail & Related papers (2022-06-05T20:45:01Z) - Subspace Diffusion Generative Models [4.310834990284412]
Score-based models generate samples by mapping noise to data (and vice versa) via a high-dimensional diffusion process.
We restrict the diffusion via projections onto subspaces as the data distribution evolves toward noise.
Our framework is fully compatible with continuous-time diffusion and retains its flexible capabilities.
arXiv Detail & Related papers (2022-05-03T13:43:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.