Learner Attentiveness and Engagement Analysis in Online Education Using Computer Vision
- URL: http://arxiv.org/abs/2412.00429v1
- Date: Sat, 30 Nov 2024 10:54:08 GMT
- Title: Learner Attentiveness and Engagement Analysis in Online Education Using Computer Vision
- Authors: Sharva Gogawale, Madhura Deshpande, Parteek Kumar, Irad Ben-Gal,
- Abstract summary: This research presents a computer vision-based approach to analyze and quantify learners' attentiveness, engagement, and other affective states within online learning scenarios.
A machine learning-based algorithm is developed on top of the classification model that outputs a comprehensive attentiveness index of the learners.
An end-to-end pipeline is proposed through which learners' live video feed is processed, providing detailed attentiveness analytics of the learners to the instructors.
- Score: 3.449808359602251
- License:
- Abstract: In recent times, online education and the usage of video-conferencing platforms have experienced massive growth. Due to the limited scope of a virtual classroom, it may become difficult for instructors to analyze learners' attention and comprehension in real time while teaching. In the digital mode of education, it would be beneficial for instructors to have an automated feedback mechanism to be informed regarding learners' attentiveness at any given time. This research presents a novel computer vision-based approach to analyze and quantify learners' attentiveness, engagement, and other affective states within online learning scenarios. This work presents the development of a multiclass multioutput classification method using convolutional neural networks on a publicly available dataset - DAiSEE. A machine learning-based algorithm is developed on top of the classification model that outputs a comprehensive attentiveness index of the learners. Furthermore, an end-to-end pipeline is proposed through which learners' live video feed is processed, providing detailed attentiveness analytics of the learners to the instructors. By comparing the experimental outcomes of the proposed method against those of previous methods, it is demonstrated that the proposed method exhibits better attentiveness detection than state-of-the-art methods. The proposed system is a comprehensive, practical, and real-time solution that is deployable and easy to use. The experimental results also demonstrate the system's efficiency in gauging learners' attentiveness.
Related papers
- Machine Learning-Driven Student Performance Prediction for Enhancing Tiered Instruction [11.564820268803619]
Student performance prediction is one of the most important subjects in educational data mining.
Despite extensive prediction experiments, machine learning methods have not been effectively integrated into practical teaching strategies.
This study integrates the results of machine learning-based student performance prediction with tiered instruction, aiming to enhance student outcomes in target course.
arXiv Detail & Related papers (2025-02-05T13:13:25Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
We introduce and motivate theoretically the principles of informed meta-learning enabling automated and controllable inductive bias selection.
We empirically demonstrate the potential benefits and limitations of informed meta-learning in improving data efficiency and generalisation.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - Revealing Networks: Understanding Effective Teacher Practices in
AI-Supported Classrooms using Transmodal Ordered Network Analysis [0.9187505256430948]
The present study uses transmodal ordered network analysis to understand effective teacher practices in relationship to traditional metrics of in-system learning in a mathematics classroom working with AI tutors.
Comparing teacher practices by student learning rates, we find that students with low learning rates exhibited more hint use after monitoring.
Students with low learning rates showed learning behavior similar to their high learning rate peers, achieving repeated correct attempts in the tutor.
arXiv Detail & Related papers (2023-12-17T21:50:02Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Explainability in Machine Learning: a Pedagogical Perspective [9.393988089692947]
We provide a pedagogical perspective on how to structure the learning process to better impart knowledge to students and researchers in machine learning.
We discuss the advantages and disadvantages of various opaque and transparent machine learning models.
We will also discuss ways to structure potential assignments to best help students learn to use explainability as a tool alongside any given machine learning application.
arXiv Detail & Related papers (2022-02-21T16:15:57Z) - An Interactive Visualization Tool for Understanding Active Learning [12.345164513513671]
We present an interactive visualization tool to elucidate the training process of active learning.
The tool enables one to select a sample of interesting data points, view how their prediction values change at different querying stages, and thus better understand when and how active learning works.
arXiv Detail & Related papers (2021-11-09T03:33:26Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
We propose a competence-aware curriculum for visual concept learning in a question-answering manner.
We design a neural-symbolic concept learner for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT) model for guiding the learning process.
Experimental results on CLEVR show that with a competence-aware curriculum, the proposed method achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-07-03T05:08:09Z) - Fake Reviews Detection through Ensemble Learning [1.609940380983903]
Several machine learning-based approaches can automatically detect deceptive and fake reviews.
This paper evaluates the performance of ensemble learning-based approaches to identify bogus online information.
arXiv Detail & Related papers (2020-06-14T14:24:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.