Advancing Myopia To Holism: Fully Contrastive Language-Image Pre-training
- URL: http://arxiv.org/abs/2412.00440v1
- Date: Sat, 30 Nov 2024 11:27:58 GMT
- Title: Advancing Myopia To Holism: Fully Contrastive Language-Image Pre-training
- Authors: Haicheng Wang, Chen Ju, Weixiong Lin, Shuai Xiao, Mengting Chen, Yixuan Huang, Chang Liu, Mingshuai Yao, Jinsong Lan, Ying Chen, Qingwen Liu, Yanfeng Wang,
- Abstract summary: This paper advances contrastive language-image pre-training (CLIP) into one novel holistic paradigm.
We use image-to-text captioning to generate multi-texts for each image, from multiple perspectives, granularities, and hierarchies.
Our holistic CLIP significantly outperforms existing CLIP, including image-text retrieval, open-vocabulary classification, and dense visual tasks.
- Score: 30.071860810401933
- License:
- Abstract: In rapidly evolving field of vision-language models (VLMs), contrastive language-image pre-training (CLIP) has made significant strides, becoming foundation for various downstream tasks. However, relying on one-to-one (image, text) contrastive paradigm to learn alignment from large-scale messy web data, CLIP faces a serious myopic dilemma, resulting in biases towards monotonous short texts and shallow visual expressivity. To overcome these issues, this paper advances CLIP into one novel holistic paradigm, by updating both diverse data and alignment optimization. To obtain colorful data with low cost, we use image-to-text captioning to generate multi-texts for each image, from multiple perspectives, granularities, and hierarchies. Two gadgets are proposed to encourage textual diversity. To match such (image, multi-texts) pairs, we modify the CLIP image encoder into multi-branch, and propose multi-to-multi contrastive optimization for image-text part-to-part matching. As a result, diverse visual embeddings are learned for each image, bringing good interpretability and generalization. Extensive experiments and ablations across over ten benchmarks indicate that our holistic CLIP significantly outperforms existing myopic CLIP, including image-text retrieval, open-vocabulary classification, and dense visual tasks.
Related papers
- ViLa-MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide Image Classification [52.405499816861635]
Multiple instance learning (MIL)-based framework has become the mainstream for processing the whole slide image (WSI)
We propose a dual-scale vision-language multiple instance learning (ViLa-MIL) framework for whole slide image classification.
arXiv Detail & Related papers (2025-02-12T13:28:46Z) - Optimizing CLIP Models for Image Retrieval with Maintained Joint-Embedding Alignment [0.7499722271664144]
Contrastive Language and Image Pairing (CLIP) is a transformative method in multimedia retrieval.
CLIP typically trains two neural networks concurrently to generate joint embeddings for text and image pairs.
This paper addresses the challenge of optimizing CLIP models for various image-based similarity search scenarios.
arXiv Detail & Related papers (2024-09-03T14:33:01Z) - MVAM: Multi-View Attention Method for Fine-grained Image-Text Matching [65.87255122130188]
We propose a Multi-view Attention Method (MVAM) for image-text matching.
We also incorporate an objective to explicitly encourage attention heads to focus on distinct aspects of the input data.
Our method allows models to encode images and text from different perspectives and focus on more critical details, leading to better matching performance.
arXiv Detail & Related papers (2024-02-27T06:11:54Z) - LightCLIP: Learning Multi-Level Interaction for Lightweight
Vision-Language Models [45.672539931681065]
We propose a multi-level interaction paradigm for training lightweight CLIP models.
An auxiliary fusion module injecting unmasked image embedding into masked text embedding is proposed.
arXiv Detail & Related papers (2023-12-01T15:54:55Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
We propose a visual-linguistic representation learning approach within a self-supervised learning framework.
We generate diverse features for the image-text matching (ITM) task via soft-masking the regions in an image.
We identify the relevant regions to each word by computing the word-conditional visual attention using multi-modal encoder.
arXiv Detail & Related papers (2023-04-03T05:07:49Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - FILIP: Fine-grained Interactive Language-Image Pre-Training [106.19474076935363]
Fine-grained Interactive Language-Image Pre-training achieves finer-level alignment through a cross-modal late interaction mechanism.
We construct a new large-scale image-text pair dataset called FILIP300M for pre-training.
Experiments show that FILIP achieves state-of-the-art performance on multiple downstream vision-language tasks.
arXiv Detail & Related papers (2021-11-09T17:15:38Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.