論文の概要: Graph-to-SFILES: Control structure prediction from process topologies using generative artificial intelligence
- arxiv url: http://arxiv.org/abs/2412.00508v1
- Date: Sat, 30 Nov 2024 15:30:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:50.328754
- Title: Graph-to-SFILES: Control structure prediction from process topologies using generative artificial intelligence
- Title(参考訳): Graph-to-SFILES:生成人工知能を用いたプロセストポロジからの制御構造予測
- Authors: Lukas Schulze Balhorn, Kevin Degens, Artur M. Schweidtmann,
- Abstract要約: 制御構造設計は、P&ID開発において重要なステップであるが面倒なステップである。
生成人工知能(AI)は、技術者を支援することによってP&ID開発時間を短縮することを約束する。
本稿では,フローシートトポロジから制御構造を予測するための生成AI手法であるGraph-to-SFILESモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Control structure design is an important but tedious step in P&ID development. Generative artificial intelligence (AI) promises to reduce P&ID development time by supporting engineers. Previous research on generative AI in chemical process design mainly represented processes by sequences. However, graphs offer a promising alternative because of their permutation invariance. We propose the Graph-to-SFILES model, a generative AI method to predict control structures from flowsheet topologies. The Graph-to-SFILES model takes the flowsheet topology as a graph input and returns a control-extended flowsheet as a sequence in the SFILES 2.0 notation. We compare four different graph encoder architectures, one of them being a graph neural network (GNN) proposed in this work. The Graph-to-SFILES model achieves a top-5 accuracy of 73.2% when trained on 10,000 flowsheet topologies. In addition, the proposed GNN performs best among the encoder architectures. Compared to a purely sequence-based approach, the Graph-to-SFILES model improves the top-5 accuracy for a relatively small training dataset of 1,000 flowsheets from 0.9% to 28.4%. However, the sequence-based approach performs better on a large-scale dataset of 100,000 flowsheets. These results highlight the potential of graph-based AI models to accelerate P&ID development in small-data regimes but their effectiveness on industry relevant case studies still needs to be investigated.
- Abstract(参考訳): 制御構造設計は、P&ID開発において重要なステップであるが面倒なステップである。
生成人工知能(AI)は、技術者を支援することによってP&ID開発時間を短縮することを約束する。
化学プロセス設計における生成AIに関するこれまでの研究は、主にシーケンスによってプロセスを表現する。
しかし、グラフはその置換不変性のために有望な代替を提供する。
本稿では,フローシートトポロジから制御構造を予測するための生成AI手法であるGraph-to-SFILESモデルを提案する。
Graph-to-SFILESモデルでは、フローシートトポロジをグラフ入力として、制御拡張フローシートをSFILES 2.0表記のシーケンスとして返す。
本研究で提案したグラフニューラルネットワーク(GNN)を4つの異なるグラフエンコーダアーキテクチャと比較する。
Graph-to-SFILESモデルは1万のフローシートトポロジでトレーニングすると、トップ5の精度が73.2%に達する。
さらに,提案したGNNは,エンコーダアーキテクチャの中でも最良である。
純粋にシーケンスベースのアプローチと比較して、Graph-to-SFILESモデルは、1000フローシートの比較的小さなトレーニングデータセットを0.9%から28.4%に改善する。
しかし、シーケンスベースのアプローチは、100,000フローシートの大規模データセットにおいて、より優れたパフォーマンスを発揮する。
これらの結果は、小規模データ体制におけるP&ID開発を促進するグラフベースのAIモデルの可能性を浮き彫りにしている。
関連論文リスト
- Range-aware Positional Encoding via High-order Pretraining: Theory and Practice [14.521929085104441]
大量のグラフデータに対する教師なし事前トレーニングは、ラベル付きデータが制限された実世界のアプリケーションでは不可欠である。
本稿では,多解像度構造情報をモデル化することに焦点を当てたグラフの事前学習戦略を提案する。
このアプローチはグラフ構造にのみ依存するが、ドメインに依存しず、さまざまなドメインのデータセットに適応可能である。
論文 参考訳(メタデータ) (2024-09-27T19:53:10Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Does Graph Distillation See Like Vision Dataset Counterpart? [26.530765707382457]
本稿では,従来の構造情報を合成データにブロードキャストするSGDD(Structure-Broadcasting Graph dataset Distillation)方式を提案する。
9つのデータセットにまたがって提案したSGDDを検証する。
論文 参考訳(メタデータ) (2023-10-13T15:36:48Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
本稿では,グラフ生成モジュールとGNN予測モジュールを含む分離学習手法を提案する。
まず、Graphical Lasso(またはGraphLASSO)を使用して、データから空間パターンを直接利用してグラフ構造を構築します。
次に、これらのグラフ構造と入力データをGCRN(Graph Convolutional Recurrent Network)に適合させて予測モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-29T16:48:00Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Discrete Graph Structure Learning for Forecasting Multiple Time Series [14.459541930646205]
時系列予測は統計学、経済学、コンピュータ科学において広く研究されている。
本研究では,グラフが未知である場合,グラフニューラルネットワーク(GNN)を同時に学習することを提案する。
経験的評価は、グラフ構造学習のための最近提案されたバイレベル学習アプローチよりも、よりシンプルで効率的で優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-01-18T03:36:33Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。