A Self-Explainable Heterogeneous GNN for Relational Deep Learning
- URL: http://arxiv.org/abs/2412.00521v1
- Date: Sat, 30 Nov 2024 16:02:14 GMT
- Title: A Self-Explainable Heterogeneous GNN for Relational Deep Learning
- Authors: Francesco Ferrini, Antonio Longa, Andrea Passerini, Manfred Jaeger,
- Abstract summary: We present a self-explainable heterogeneous graph neural network (GNN) for relational data.
Our approach effectively identifies informative meta-paths that faithfully capture the model's reasoning mechanisms.
It significantly outperforms existing methods in both synthetic and real-world scenario.
- Score: 13.201879122862703
- License:
- Abstract: Recently, significant attention has been given to the idea of viewing relational databases as heterogeneous graphs, enabling the application of graph neural network (GNN) technology for predictive tasks. However, existing GNN methods struggle with the complexity of the heterogeneous graphs induced by databases with numerous tables and relations. Traditional approaches either consider all possible relational meta-paths, thus failing to scale with the number of relations, or rely on domain experts to identify relevant meta-paths. A recent solution does manage to learn informative meta-paths without expert supervision, but assumes that a node's class depends solely on the existence of a meta-path occurrence. In this work, we present a self-explainable heterogeneous GNN for relational data, that supports models in which class membership depends on aggregate information obtained from multiple occurrences of a meta-path. Experimental results show that in the context of relational databases, our approach effectively identifies informative meta-paths that faithfully capture the model's reasoning mechanisms. It significantly outperforms existing methods in both synthetic and real-world scenario.
Related papers
- RelGNN: Composite Message Passing for Relational Deep Learning [56.48834369525997]
We introduce RelGNN, a novel GNN framework specifically designed to capture the unique characteristics of relational databases.
At the core of our approach is the introduction of atomic routes, which are sequences of nodes forming high-order tripartite structures.
RelGNN consistently achieves state-of-the-art accuracy with up to 25% improvement.
arXiv Detail & Related papers (2025-02-10T18:58:40Z) - The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Meta-Path Learning for Multi-relational Graph Neural Networks [14.422104525197838]
We propose a novel approach to learn meta-paths and meta-path GNNs that are highly accurate based on a small number of informative meta-paths.
Our experimental evaluation shows that the approach manages to correctly identify relevant meta-paths even with a large number of relations.
arXiv Detail & Related papers (2023-09-29T10:12:30Z) - Meta-node: A Concise Approach to Effectively Learn Complex Relationships
in Heterogeneous Graphs [18.65171129524357]
We propose a novel concept of meta-node for message passing that can learn enriched relational knowledge from complex heterogeneous graphs without any meta-paths and meta-graphs.
Unlike meta-paths and meta-graphs, meta-nodes do not require any pre-processing steps that require expert knowledge.
In the experiments on node clustering and classification tasks, the proposed meta-node message passing method outperforms state-of-the-arts that depend on meta-paths.
arXiv Detail & Related papers (2022-10-26T05:04:29Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - DisenHAN: Disentangled Heterogeneous Graph Attention Network for
Recommendation [11.120241862037911]
Heterogeneous information network has been widely used to alleviate sparsity and cold start problems in recommender systems.
We propose a novel disentangled heterogeneous graph attention network DisenHAN for top-$N$ recommendation.
arXiv Detail & Related papers (2021-06-21T06:26:10Z) - Metapaths guided Neighbors aggregated Network for?Heterogeneous Graph
Reasoning [5.228629954007088]
We propose a Metapaths-guided Neighbors-aggregated Heterogeneous Graph Neural Network to improve performance.
We conduct extensive experiments for the proposed MHN on three real-world heterogeneous graph datasets.
arXiv Detail & Related papers (2021-03-11T05:42:06Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.