論文の概要: Rank It, Then Ask It: Input Reranking for Maximizing the Performance of LLMs on Symmetric Tasks
- arxiv url: http://arxiv.org/abs/2412.00546v1
- Date: Sat, 30 Nov 2024 17:39:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:46:12.926412
- Title: Rank It, Then Ask It: Input Reranking for Maximizing the Performance of LLMs on Symmetric Tasks
- Title(参考訳): ランク付けし、次に質問する:対称タスク上でのLLMのパフォーマンスを最大化するための入力再ランク付け
- Authors: Mohsen Dehghankar, Abolfazl Asudeh,
- Abstract要約: 大規模言語モデル(LLM)は、実用的で汎用的なツールとして急速に登場した。
クエリが(順序のない)要素のバッグ上で要求される対称なタスクに対する LLM の適用について検討する。
- 参考スコア(独自算出の注目度): 9.867695275243879
- License:
- Abstract: Large language models (LLMs) have quickly emerged as practical and versatile tools that provide new solutions for a wide range of domains. In this paper, we consider the application of LLMs on symmetric tasks where a query is asked on an (unordered) bag of elements. Examples of such tasks include answering aggregate queries on a database table. In general, when the bag contains a large number of elements, LLMs tend to overlook some elements, leading to challenges in generating accurate responses to the query. LLMs receive their inputs as ordered sequences. However, in this problem, we leverage the fact that the symmetric input is not ordered, and reordering should not affect the LLM's response. Observing that LLMs are less likely to miss elements at certain positions of the input, we introduce the problem of LLM input reranking: to find a ranking of the input that maximizes the LLM's accuracy for the given query without making explicit assumptions about the query. Finding the optimal ranking requires identifying (i) the relevance of each input element for answering the query and (ii) the importance of each rank position for the LLM's attention. We develop algorithms for estimating these values efficiently utilizing a helper LLM. We conduct comprehensive experiments on different synthetic and real datasets to validate our proposal and to evaluate the effectiveness of our proposed algorithms. Our experiments confirm that our reranking approach improves the accuracy of the LLMs on symmetric tasks by up to $99\%$ proximity to the optimum upper bound.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い領域に新しいソリューションを提供する実用的で汎用的なツールとして急速に現れてきた。
本稿では,クエリが(順序のない)要素のバッグ上で要求される対称なタスクに対する LLM の適用について考察する。
そのようなタスクの例としては、データベーステーブル上の集約クエリの応答がある。
一般に、バッグに多数の要素が含まれている場合、LCMはいくつかの要素を見落としてしまう傾向があり、クエリに対する正確な応答を生成するのに困難が生じる。
LLMは順序付けられたシーケンスとして入力を受け取る。
しかし,本問題では,対称入力が順序づけられておらず,再順序付けがLLMの応答に影響を与えないという事実を活用する。
LLMが入力の特定の位置にある要素を見逃す可能性が低いことを見極め、LLMの入力再ランクの問題を提起する: クエリについて明確な仮定をすることなく、与えられたクエリに対するLLMの精度を最大化する入力のランキングを見つける。
最適なランキングを見つけるには、識別が必要である
一 クエリに応答する各入力要素の関連性及び
(二)LLMの注意を引くために各階級の位置づけが重要であること。
我々はヘルパーLLMを用いてこれらの値を効率的に推定するアルゴリズムを開発した。
提案手法の有効性を検証し,提案アルゴリズムの有効性を評価するために,異なる合成データセットと実データセットの総合的な実験を行った。
実験により, 最適上界に最大99 % 近い対称問題におけるLLMの精度が向上することが確認された。
関連論文リスト
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - The Unreasonable Effectiveness of LLMs for Query Optimization [4.50924404547119]
クエリテキストの埋め込みには,クエリ最適化に有用な意味情報が含まれていることを示す。
少数の組込みクエリベクタで訓練された代替クエリプラン間の単純なバイナリが既存のシステムより優れていることを示す。
論文 参考訳(メタデータ) (2024-11-05T07:10:00Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なタスクで顕著な成功を収めたため、人気が高まっている。
しかしながら、個々のLLMは、トレーニングバイアス、モデルサイズ、使用されるデータセットなどの要因のために、複雑なタスクに適用する場合に制限がある。
本稿では,入力クエリを大規模プールからLLMの最も適切なサブセットに誘導する新しいアルゴリズムであるSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
論文 参考訳(メタデータ) (2024-04-17T01:15:54Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
本稿では,LLMをリレーショナルクエリ内で実行する解析処理に対して,LLM(Large Language Models)推論を最適化する方法を示す。
私たちはこれらの最適化をApache Sparkで実装し、vLLMをバックエンドとして提供しています。
実データセット上の多様なLLMベースのクエリのベンチマークで、エンドツーエンドのレイテンシを最大4.4倍改善する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - Query-OPT: Optimizing Inference of Large Language Models via Multi-Query Instructions in Meeting Summarization [7.674972936853123]
我々は,同一の入力コンテキストに対するクエリを1つのプロンプトで組み合わせて,繰り返し呼び出しを最小限に抑える方法が,要約の達成に有効かどうかを検討する。
予測フォーマットでの応答生成における100%の信頼性は、通常、特定のクローズドソース LLM に制限される。
論文 参考訳(メタデータ) (2024-02-29T19:00:47Z) - PiCO: Peer Review in LLMs based on the Consistency Optimization [19.130941716491716]
ピアレビュー機構を用いて,大規模言語モデル(LLM)を自動的に測定する。
制約付き最適化問題として定式化し、各LLMの能力とスコアの一貫性を最大化することを目的としている。
我々はPEN, CIN, LISという3つの指標を提案し, ランク付けのギャップを評価する。
論文 参考訳(メタデータ) (2024-02-02T18:49:26Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。