Quench Spectroscopy for Dissipative and (Non)-Hermitian Quantum Lattice Models
- URL: http://arxiv.org/abs/2412.00637v2
- Date: Fri, 21 Feb 2025 20:21:08 GMT
- Title: Quench Spectroscopy for Dissipative and (Non)-Hermitian Quantum Lattice Models
- Authors: Julien Despres,
- Abstract summary: We extend the quench spectroscopy method to dissipative and isolated non-Hermitian quantum lattice models.<n>We first investigate theoretically the dynamics of the open Bose-Hubbard chain confined in the superfluid phase induced by a sudden global quench.<n>We then discuss the applicability of the quench spectroscopy to non-Hermitian transverse-field Ising chain confined in the paramagnetic phase.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend the quench spectroscopy method to dissipative and isolated non-Hermitian quantum lattice models via the case study of the open Bose-Hubbard chain and the non-Hermitian transverse-field Ising chain respectively. We first investigate theoretically the dynamics of the open Bose-Hubbard chain confined in the superfluid phase induced by a sudden global quench on the dissipations and the repulsive interactions using the equation-of-motion approach. Using the same analytical approach, we then discuss the applicability of the quench spectroscopy to non-Hermitian quantum lattice models by considering the sudden global quench dynamics of the non-Hermitian transverse-field Ising chain confined in the paramagnetic phase. We finally generalize this spectroscopy method to isolated Hermitian quantum lattice models characterized by a quadratic fermionic or bosonic Hamiltonian. For this purpose, we consider the case study of the Hermitian version of the latter one-dimensional lattice model. The investigation is performed analytically for the bosonic and fermionic reformulations while considering for each case the equation-of-motion and quasiparticle theoretical approaches.
Related papers
- Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.
We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.
We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Analytical Study of the Non-Hermitian Semiclassical Rabi Model [0.6554326244334868]
The $mathcalPT$-broken phase closely matches the numerical exact one over a wide range of atomic frequencies.
By analyzing the dynamics of excited-state population, we observe several stable oscillations in the Fourier spectrum.
The present analytical treatment provides a concise and accurate description of the main physics of this non-Hermitian atom-field interaction system.
arXiv Detail & Related papers (2024-12-04T00:08:45Z) - Emergent quantum Majorana metal from a chiral spin liquid [50.56734933757366]
We propose a mechanism to explain the emergence of an intermediate gapless spin liquid phase in the antiferromagnetic Kitaev model.
We show that the Majorana spectral function captures the dynamical spin and dimer correlations obtained by the infinite Projectedangled Pair States method.
arXiv Detail & Related papers (2024-05-20T18:00:01Z) - Breakdown of Linear Spin-Wave Theory in a Non-Hermitian Quantum Spin Chain [0.0]
We present the spin-wave theory of the excitation spectrum and quench dynamics of the non-Hermitian transverse-field Ising model.
The complex excitation spectrum is obtained for a generic hypercubic lattice using the linear approximation of the Holstein-Primakoff transformation.
We show however that the linear spin-wave approximation breaks down and the bosonic theory is plagued by a divergence at finite times.
arXiv Detail & Related papers (2023-10-02T08:46:40Z) - The quantum vortices dynamics: spatio-temporal scale hierarchy and origin of turbulence [0.0]
This study investigates the evolution and interaction of quantum vortex loops with a small but non-zero radius of core.
We consider small perturbations in the ring-shaped loops, which include both helical-type shape variations and small excitations of the flow in the vortex core.
arXiv Detail & Related papers (2023-09-03T05:39:13Z) - Non-Bloch dynamics and topology in a classical non-equilibrium process [6.787112704740002]
The non-Hermitian skin effect refers to the accumulation of eigenstates near the boundary in open boundary lattice models.
Our study highlights the significant and general role of non-Bloch topology in non-equilibrium dynamics.
arXiv Detail & Related papers (2023-06-19T18:15:03Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Quantum Chaos and Coherence: Random Parametric Quantum Channels [0.0]
We quantify interplay between quantum chaos and decoherence away from the semi-classical limit.
We introduce Parametric Quantum Channels (PQC), a discrete-time model of unitary evolution mixed with the effects of measurements or transient interactions with an environment.
arXiv Detail & Related papers (2023-05-30T18:00:06Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Characterizing quantum criticality and steered coherence in the XY-Gamma
chain [0.37498611358320727]
We analytically solve the one-dimensional short-range interacting case with the Jordan-Wigner transformation.
In the gapless phase, an incommensurate spiral order is manifested by the vector-chiral correlations.
We derive explicit scaling forms of the excitation gap near the quantum critical points.
arXiv Detail & Related papers (2022-06-08T15:28:10Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.