Towards Unified Molecule-Enhanced Pathology Image Representation Learning via Integrating Spatial Transcriptomics
- URL: http://arxiv.org/abs/2412.00651v1
- Date: Sun, 01 Dec 2024 03:09:52 GMT
- Title: Towards Unified Molecule-Enhanced Pathology Image Representation Learning via Integrating Spatial Transcriptomics
- Authors: Minghao Han, Dingkang Yang, Jiabei Cheng, Xukun Zhang, Linhao Qu, Zizhi Chen, Lihua Zhang,
- Abstract summary: We introduce a Unified Molecule-enhanced Pathology Image REpresentationn Learning framework (UMPIRE)
UMPIRE aims to leverage complementary information from gene expression profiles to guide the multimodal pre-training.
We demonstrate that this molecular perspective provides a robust, task-agnostic training signal for learning pathology image embeddings.
- Score: 10.962389869127875
- License:
- Abstract: Recent advancements in multimodal pre-training models have significantly advanced computational pathology. However, current approaches predominantly rely on visual-language models, which may impose limitations from a molecular perspective and lead to performance bottlenecks. Here, we introduce a Unified Molecule-enhanced Pathology Image REpresentationn Learning framework (UMPIRE). UMPIRE aims to leverage complementary information from gene expression profiles to guide the multimodal pre-training, enhancing the molecular awareness of pathology image representation learning. We demonstrate that this molecular perspective provides a robust, task-agnostic training signal for learning pathology image embeddings. Due to the scarcity of paired data, approximately 4 million entries of spatial transcriptomics gene expression were collected to train the gene encoder. By leveraging powerful pre-trained encoders, UMPIRE aligns the encoders across over 697K pathology image-gene expression pairs. The performance of UMPIRE is demonstrated across various molecular-related downstream tasks, including gene expression prediction, spot classification, and mutation state prediction in whole slide images. Our findings highlight the effectiveness of multimodal data integration and open new avenues for exploring computational pathology enhanced by molecular perspectives. The code and pre-trained weights are available at https://github.com/Hanminghao/UMPIRE.
Related papers
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)
KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.
This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - Dynamic Entity-Masked Graph Diffusion Model for histopathological image Representation Learning [25.197342542821843]
We introduce H-MGDM, a novel self-supervised Histopathology image representation learning method through the Dynamic Entity-Masked Graph Diffusion Model.
Specifically, we propose to use complementary subgraphs as latent diffusion conditions and self-supervised targets respectively during pre-training.
arXiv Detail & Related papers (2024-12-13T10:18:36Z) - HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACE model explore the diversity of histological images available with ST data to extract molecular insights from tissue image.
Model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation.
arXiv Detail & Related papers (2024-08-07T07:12:52Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
Deep learning-based molecular property prediction has emerged as a solution to the resource-intensive nature of traditional methods.
In this paper, we propose a novel multi-modal representation learning model, called SGGRL, for molecular property prediction.
To ensure consistency across modalities, SGGRL is trained to maximize the similarity of representations for the same molecule while minimizing similarity for different molecules.
arXiv Detail & Related papers (2024-01-07T02:18:00Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.
Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.
By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Multi-task Learning of Histology and Molecular Markers for Classifying
Diffuse Glioma [9.082753496844731]
We propose a hierarchical multi-task multi-instance learning framework to jointly predict histology and molecular markers.
We also propose a co-occurrence probability-based label correction graph network to model the co-occurrence of molecular markers.
Our experiments show that our method outperforms other state-of-the-art methods in classifying diffuse glioma.
arXiv Detail & Related papers (2023-03-26T23:00:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
We conduct a search for good representations in pathology by training a variety of self-supervised models with validation on a variety of weakly-supervised and patch-level tasks.
Our key finding is in discovering that Vision Transformers using DINO-based knowledge distillation are able to learn data-efficient and interpretable features in histology images.
arXiv Detail & Related papers (2022-03-01T16:14:41Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.