Multi-task Learning of Histology and Molecular Markers for Classifying
Diffuse Glioma
- URL: http://arxiv.org/abs/2303.14845v3
- Date: Tue, 27 Jun 2023 09:22:05 GMT
- Title: Multi-task Learning of Histology and Molecular Markers for Classifying
Diffuse Glioma
- Authors: Xiaofei Wang and Stephen Price and Chao Li
- Abstract summary: We propose a hierarchical multi-task multi-instance learning framework to jointly predict histology and molecular markers.
We also propose a co-occurrence probability-based label correction graph network to model the co-occurrence of molecular markers.
Our experiments show that our method outperforms other state-of-the-art methods in classifying diffuse glioma.
- Score: 9.082753496844731
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most recently, the pathology diagnosis of cancer is shifting to integrating
molecular makers with histology features. It is a urgent need for digital
pathology methods to effectively integrate molecular markers with histology,
which could lead to more accurate diagnosis in the real world scenarios. This
paper presents a first attempt to jointly predict molecular markers and
histology features and model their interactions for classifying diffuse glioma
bases on whole slide images. Specifically, we propose a hierarchical multi-task
multi-instance learning framework to jointly predict histology and molecular
markers. Moreover, we propose a co-occurrence probability-based label
correction graph network to model the co-occurrence of molecular markers.
Lastly, we design an inter-omic interaction strategy with the dynamical
confidence constraint loss to model the interactions of histology and molecular
markers. Our experiments show that our method outperforms other
state-of-the-art methods in classifying diffuse glioma,as well as related
histology and molecular markers on a multi-institutional dataset.
Related papers
- LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification [41.94295877935867]
This paper introduces LASSO-MOGAT, a graph-based deep learning framework that integrates messenger RNA, microRNA, and DNA methylation data to classify 31 cancer types.
arXiv Detail & Related papers (2024-08-30T16:26:04Z) - Focus on Focus: Focus-oriented Representation Learning and Multi-view Cross-modal Alignment for Glioma Grading [15.492493684721175]
multimodal deep learning has achieved a promising performance in glioma grading.
We introduce a novel Focus on Focus (FoF) framework with paired pathology-genomic training and applicable pathology-only inference.
Experiments on the TCGA GBM-LGG dataset demonstrate that our FoF framework significantly improves the glioma grading.
arXiv Detail & Related papers (2024-08-16T04:54:10Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
We propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis.
The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph.
We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas.
arXiv Detail & Related papers (2024-04-11T09:07:40Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Mapping the landscape of histomorphological cancer phenotypes using
self-supervised learning on unlabeled, unannotated pathology slides [9.27127895781971]
Histomorphological Phenotype Learning operates via the automatic discovery of discriminatory image features in small image tiles.
Tiles are grouped into morphologically similar clusters which constitute a library of histomorphological phenotypes.
arXiv Detail & Related papers (2022-05-04T08:06:55Z) - Pan-Cancer Integrative Histology-Genomic Analysis via Interpretable
Multimodal Deep Learning [4.764927152701701]
We integrate whole slide pathology images, RNA-seq abundance, copy number variation, and mutation data from 5,720 patients across 14 major cancer types.
Our interpretable, weakly-supervised, multimodal deep learning algorithm is able to fuse these heterogeneous modalities for predicting outcomes.
We analyze morphologic and molecular markers responsible for prognostic predictions across all cancer types.
arXiv Detail & Related papers (2021-08-04T20:40:05Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.