論文の概要: Mean-Field Sampling for Cooperative Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.00661v1
- Date: Sun, 01 Dec 2024 03:45:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:18.848967
- Title: Mean-Field Sampling for Cooperative Multi-Agent Reinforcement Learning
- Title(参考訳): 協調型マルチエージェント強化学習のための平均フィールドサンプリング
- Authors: Emile Anand, Ishani Karmarkar, Guannan Qu,
- Abstract要約: マルチエージェント強化学習のための新しいアルゴリズムを提案する。
この学習されたポリシーは、サブサンプルエージェントの数が増加するにつれて、$tildeO (1/sqrtk)$の順序で最適ポリシーに収束することを示す。
- 参考スコア(独自算出の注目度): 4.899818550820576
- License:
- Abstract: Designing efficient algorithms for multi-agent reinforcement learning (MARL) is fundamentally challenging due to the fact that the size of the joint state and action spaces are exponentially large in the number of agents. These difficulties are exacerbated when balancing sequential global decision-making with local agent interactions. In this work, we propose a new algorithm \texttt{SUBSAMPLE-MFQ} (\textbf{Subsample}-\textbf{M}ean-\textbf{F}ield-\textbf{Q}-learning) and a decentralized randomized policy for a system with $n$ agents. For $k\leq n$, our algorithm system learns a policy for the system in time polynomial in $k$. We show that this learned policy converges to the optimal policy in the order of $\tilde{O}(1/\sqrt{k})$ as the number of subsampled agents $k$ increases. We validate our method empirically on Gaussian squeeze and global exploration settings.
- Abstract(参考訳): マルチエージェント強化学習(MARL)のための効率的なアルゴリズムの設計は, エージェント数において, 結合状態と作用空間のサイズが指数関数的に大きいため, 基本的には困難である。
これらの困難は、連続的なグローバルな意思決定とローカルエージェントの相互作用のバランスをとることで悪化する。
本研究では,新しいアルゴリズムである \textt{SUBSAMPLE-MFQ} (\textbf{Subsample}-\textbf{M}ean-\textbf{F}ield-\textbf{Q}-learning) を提案する。
k\leq n$の場合、我々のアルゴリズムシステムは、時間多項式におけるシステムのポリシーを$k$で学習する。
この学習されたポリシーは$\tilde{O}(1/\sqrt{k})$の順序で最適ポリシーに収束することを示す。
提案手法はガウシアン・シュレッシャーとグローバル・サーベイ・セッティングで実証的に検証する。
関連論文リスト
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
離散部分モジュラー問題を連続的に最適化するために,$textbfMA-OSMA$アルゴリズムを提案する。
また、一様分布を混合することによりKLの発散を効果的に活用する、プロジェクションフリーな$textbfMA-OSEA$アルゴリズムも導入する。
我々のアルゴリズムは最先端OSGアルゴリズムによって提供される$(frac11+c)$-approximationを大幅に改善する。
論文 参考訳(メタデータ) (2025-02-07T15:57:56Z) - Cooperative Multi-Agent Constrained Stochastic Linear Bandits [2.099922236065961]
N$エージェントのネットワークがローカルに通信し、期待されるコストを所定の閾値$tau$で保持しながら、全体的な後悔を最小限に抑える。
我々は、textitMA-OPLBと呼ばれる安全な分散上信頼度有界アルゴリズムを提案し、そのT$ラウンドの後悔に基づく高い確率を確立する。
我々の後悔の限界は次数$ MathcalOleft(fracdtau-c_0fraclog(NT)2sqrtNsqrtTlog (1/|lambda|)であることを示す。
論文 参考訳(メタデータ) (2024-10-22T19:34:53Z) - Federated Combinatorial Multi-Agent Multi-Armed Bandits [79.1700188160944]
本稿では,Banditを用いたオンライン最適化に適したフェデレーション学習フレームワークを提案する。
この設定では、エージェントのアームサブセットは、個々のアーム情報にアクセスせずにこれらのサブセットに対するノイズの多い報酬を観察し、特定の間隔で協力して情報を共有することができる。
論文 参考訳(メタデータ) (2024-05-09T17:40:09Z) - Asynchronous Federated Reinforcement Learning with Policy Gradient Updates: Algorithm Design and Convergence Analysis [41.75366066380951]
N$エージェント間の協調によりグローバルモデルを構築する非同期強化学習フレームワークAFedPGを提案する。
我々は, AFedPGの理論的大域収束境界を解析し, サンプル複雑性と時間複雑性の両方の観点から, 提案アルゴリズムの利点を特徴づける。
各種エージェントを多用した4つの MuJoCo 環境における AFedPG の性能改善を実証的に検証した。
論文 参考訳(メタデータ) (2024-04-09T04:21:13Z) - Efficient Reinforcement Learning for Global Decision Making in the Presence of Local Agents at Scale [5.3526997662068085]
本研究では,地域エージェントの存在下でのグローバル意思決定のための強化学習について検討する。
この環境では、状態空間のサイズのため、スケーラビリティは長年にわたる課題でした。
この学習されたポリシーは、サブサンプリングエージェントの数が増加するにつれて、$tildeO (1/sqrtk+epsilon_k,m)$の順序で最適ポリシーに収束することを示す。
論文 参考訳(メタデータ) (2024-03-01T01:49:57Z) - Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with
General Utilities [12.104551746465932]
安全マルチエージェント強化学習について検討し、エージェントはそれぞれの安全制約を満たしつつ、局所的な目的の総和をまとめて最大化しようとする。
我々のアルゴリズムは、$mathcalOleft(T-2/3right)$のレートで1次定常点(FOSP)に収束する。
サンプルベースの設定では、高い確率で、我々のアルゴリズムは、$epsilon$-FOSPを達成するために$widetildemathcalOleft(epsilon-3.5right)$サンプルが必要です。
論文 参考訳(メタデータ) (2023-05-27T20:08:35Z) - Cooperative Multi-Agent Reinforcement Learning: Asynchronous
Communication and Linear Function Approximation [77.09836892653176]
マルコフ決定過程の設定におけるマルチエージェント強化学習について検討した。
本稿では非同期通信が可能な値に基づく証明可能な効率的なアルゴリズムを提案する。
我々は、コラボレーションによってパフォーマンスを改善するために、最小の$Omega(dM)$通信の複雑さが必要であることを示す。
論文 参考訳(メタデータ) (2023-05-10T20:29:29Z) - Adversarial Online Multi-Task Reinforcement Learning [12.421997449847153]
対戦型オンラインマルチタスク強化学習環境について考察する。
K$の各エピソードにおいて、学習者は未知のタスクをM$未知有限ホライゾン MDP モデルの有限集合から与えられる。
学習者の目的は,各課題に対する最適方針に関して,その後悔を一般化することである。
論文 参考訳(メタデータ) (2023-01-11T02:18:26Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
報酬混合マルコフ決定過程(RMMDP)におけるエピソード強化学習の検討
我々のゴールは、そのようなモデルにおける時間段階の累積報酬をほぼ最大化する、ほぼ最適に近いポリシーを学ぶことである。
論文 参考訳(メタデータ) (2022-10-05T22:52:00Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
本稿では,RLアルゴリズムによって収集されたデータポイントの情報取得量を測定する,効率的なオンラインサブサンプリングフレームワークを確立する。
複雑性バウンド関数クラスを持つ値ベースのメソッドの場合、$proptooperatornamepolylog(K)$ timesに対してのみポリシーを更新する必要がある。
少なくとも$Omega(K)$倍のポリシーを更新する既存のアプローチとは対照的に、当社のアプローチはポリシーの解決における最適化コールの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-06-14T07:36:25Z) - Reward-Free Exploration for Reinforcement Learning [82.3300753751066]
探索の課題を分離する「逆フリーなRL」フレームワークを提案する。
我々は,$tildemathcalO(S2Amathrmpoly(H)/epsilon2)$の探索を効率的に行うアルゴリズムを提案する。
また、ほぼ一致する$Omega(S2AH2/epsilon2)$ lower boundを与え、この設定でアルゴリズムのほぼ最適性を示す。
論文 参考訳(メタデータ) (2020-02-07T14:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。