DMFourLLIE: Dual-Stage and Multi-Branch Fourier Network for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2412.00683v1
- Date: Sun, 01 Dec 2024 05:44:50 GMT
- Title: DMFourLLIE: Dual-Stage and Multi-Branch Fourier Network for Low-Light Image Enhancement
- Authors: Tongshun Zhang, Pingping Liu, Ming Zhao, Haotian Lv,
- Abstract summary: We propose a Dual-Stage Multi-Branch Fourier Low-Light Image Enhancement (DMFourLLIE) framework to address limitations.
The first stage integrates structural information from infrared images to enhance the phase component.
The second stage combines multi-scale and Fourier convolutional branches for robust image reconstruction.
- Score: 3.2286595119663266
- License:
- Abstract: In the Fourier frequency domain, luminance information is primarily encoded in the amplitude component, while spatial structure information is significantly contained within the phase component. Existing low-light image enhancement techniques using Fourier transform have mainly focused on amplifying the amplitude component and simply replicating the phase component, an approach that often leads to color distortions and noise issues. In this paper, we propose a Dual-Stage Multi-Branch Fourier Low-Light Image Enhancement (DMFourLLIE) framework to address these limitations by emphasizing the phase component's role in preserving image structure and detail. The first stage integrates structural information from infrared images to enhance the phase component and employs a luminance-attention mechanism in the luminance-chrominance color space to precisely control amplitude enhancement. The second stage combines multi-scale and Fourier convolutional branches for robust image reconstruction, effectively recovering spatial structures and textures. This dual-branch joint optimization process ensures that complex image information is retained, overcoming the limitations of previous methods that neglected the interplay between amplitude and phase. Extensive experiments across multiple datasets demonstrate that DMFourLLIE outperforms current state-of-the-art methods in low-light image enhancement. Our code is available at https://github.com/bywlzts/DMFourLLIE.
Related papers
- DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains [0.0]
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions.
These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.
We propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms.
arXiv Detail & Related papers (2025-01-21T15:58:16Z) - LTCF-Net: A Transformer-Enhanced Dual-Channel Fourier Framework for Low-Light Image Restoration [1.049712834719005]
We introduce LTCF-Net, a novel network architecture designed for enhancing low-light images.
Our approach utilizes two color spaces - LAB and YUV - to efficiently separate and process color information.
Our model incorporates the Transformer architecture to comprehensively understand image content.
arXiv Detail & Related papers (2024-11-24T07:21:17Z) - A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - Spatial-frequency Dual-Domain Feature Fusion Network for Low-Light Remote Sensing Image Enhancement [49.15531684596958]
We propose a Dual-Domain Feature Fusion Network (DFFN) for low-light remote sensing image enhancement.
The first phase learns amplitude information to restore image brightness, and the second phase learns phase information to refine details.
We have constructed two dark light remote sensing datasets to address the current lack of datasets in dark light remote sensing image enhancement.
arXiv Detail & Related papers (2024-04-26T13:21:31Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
Multi-exposure image fusion aims to generate a single high-dynamic image by integrating images with different exposures.
We propose a novelty perspective on multi-exposure image fusion via the Spatial-Frequency Integration Framework, named MEF-SFI.
Our method achieves visual-appealing fusion results against state-of-the-art multi-exposure image fusion approaches.
arXiv Detail & Related papers (2023-12-17T04:45:15Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
We propose a novel Mutual Information-driven Triple interaction Network (MITNet) for image dehazing.
The first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal.
The second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum.
arXiv Detail & Related papers (2023-08-14T08:23:58Z) - FourLLIE: Boosting Low-Light Image Enhancement by Fourier Frequency
Information [19.478293277978935]
We propose a two-stage Fourier-based Low-Light Image Enhancement (LLIE) network (FourLLIE)
In the first stage, we improve the lightness of low-light images by estimating the amplitude transform map in the Fourier space.
In the second stage, we introduce the Signal-to-Noise-Ratio (SNR) map to provide the prior for integrating the global Fourier frequency and the local spatial information.
arXiv Detail & Related papers (2023-08-06T06:14:14Z) - Embedding Fourier for Ultra-High-Definition Low-Light Image Enhancement [78.67036949708795]
Ultra-High-Definition (UHD) photo has gradually become the standard configuration in advanced imaging devices.
We propose a new solution, UHDFour, that embeds Fourier transform into a cascaded network.
We also contribute the first real UHD LLIE dataset, textbfUHD-LL, that contains 2,150 low-noise/normal-clear 4K image pairs.
arXiv Detail & Related papers (2023-02-23T07:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.