論文の概要: Free and Customizable Code Documentation with LLMs: A Fine-Tuning Approach
- arxiv url: http://arxiv.org/abs/2412.00726v1
- Date: Sun, 01 Dec 2024 08:38:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:47.646258
- Title: Free and Customizable Code Documentation with LLMs: A Fine-Tuning Approach
- Title(参考訳): LLMによる自由でカスタマイズ可能なコードドキュメンテーション:ファインチューニングアプローチ
- Authors: Sayak Chakrabarty, Souradip Pal,
- Abstract要約: 開発者がサポートツールとして利用できる,LLM(Big Language Model)ベースのアプリケーションを紹介します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Automated documentation of programming source code is a challenging task with significant practical and scientific implications for the developer community. We present a large language model (LLM)-based application that developers can use as a support tool to generate basic documentation for any publicly available repository. Over the last decade, several papers have been written on generating documentation for source code using neural network architectures. With the recent advancements in LLM technology, some open-source applications have been developed to address this problem. However, these applications typically rely on the OpenAI APIs, which incur substantial financial costs, particularly for large repositories. Moreover, none of these open-source applications offer a fine-tuned model or features to enable users to fine-tune. Additionally, finding suitable data for fine-tuning is often challenging. Our application addresses these issues which is available at https://pypi.org/project/readme-ready/.
- Abstract(参考訳): ソースコードの自動化されたドキュメンテーションは、開発者コミュニティにとって重要な実践的かつ科学的意味を持つ難しいタスクである。
開発者がサポートツールとして利用できる,LLM(Big Language Model)ベースのアプリケーションを紹介します。
過去10年間で、ニューラルネットワークアーキテクチャを使用したソースコードのドキュメンテーション作成に関するいくつかの論文が執筆されている。
LLM技術の最近の進歩により、この問題に対処するためにいくつかのオープンソースアプリケーションが開発されている。
しかし、これらのアプリケーションは一般的にOpenAI APIに依存しており、特に大規模なリポジトリでは、かなりの費用がかかる。
さらに、これらのオープンソースアプリケーションは、ユーザが微調整できるような、微調整されたモデルや機能を提供していません。
さらに、微調整に適したデータを見つけることは、しばしば困難である。
私たちのアプリケーションは、https://pypi.org/project/readme-ready/で利用できるこれらの問題に対処します。
関連論文リスト
- Human-In-the-Loop Software Development Agents [12.830816751625829]
大規模言語モデル(LLM)は、ソフトウェア開発タスクを自動的に解決するために導入された。
ソフトウェア開発のためのHuman-in-the-loop LLMベースのエージェントフレームワーク(HULA)を紹介する。
私たちは社内使用のために、HULAフレームワークをAtlassianに設計、実装、デプロイしています。
論文 参考訳(メタデータ) (2024-11-19T23:22:33Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Free to play: UN Trade and Development's experience with developing its own open-source Retrieval Augmented Generation Large Language Model application [0.0]
UNCTADは、独自のオープンソースのRetrieval Augmented Generation (RAG) LLMアプリケーションを探索、開発している。
RAGは、大規模言語モデルを組織のドメインや作業に意識し、より有用なものにします。
アプリを生成するために開発された3つのライブラリ、ドキュメント処理と統計解析用のnlp_pipeline、ローカルなRAG LLMを実行する local_rag_llm、ユーザインターフェース用の streamlit_rag は、DockerfilesでPyPIとGitHubで公開されている。
論文 参考訳(メタデータ) (2024-06-18T14:23:54Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - DataDreamer: A Tool for Synthetic Data Generation and Reproducible LLM Workflows [72.40917624485822]
我々は、研究者が強力な大規模言語モデルを実装することができるオープンソースのPythonライブラリであるDataDreamerを紹介した。
DataDreamerはまた、オープンサイエンスを促進するために提案するベストプラクティスに研究者が従うのを助ける。
論文 参考訳(メタデータ) (2024-02-16T00:10:26Z) - FAIR-USE4OS: Guidelines for Creating Impactful Open-Source Software [0.41942958779358663]
本稿では、FAIR(Findable, Accessible, Interoperable, Reusable)ガイドラインを拡張し、ソフトウェアがオープンソースにおけるベストプラクティスに準拠しているかどうかを評価するための基準を提供する。
FAIR-USE4OSガイドラインは、資金提供者と研究者がオープンソースソフトウェアプロジェクトをより効果的に評価し、計画することを可能にする。
論文 参考訳(メタデータ) (2024-02-05T09:15:20Z) - SoTaNa: The Open-Source Software Development Assistant [81.86136560157266]
SoTaNaはオープンソースのソフトウェア開発アシスタントだ。
ソフトウェア工学の分野のための高品質な命令ベースのデータを生成する。
オープンソースの基盤モデルであるLLaMAを強化するためにパラメータ効率のよい微調整アプローチを採用している。
論文 参考訳(メタデータ) (2023-08-25T14:56:21Z) - Enhancing API Documentation through BERTopic Modeling and Summarization [0.0]
本稿では、アプリケーションプログラミングインタフェース(API)ドキュメントの解釈の複雑さに焦点を当てる。
公式APIドキュメンテーションは、開発者にとって最も重要な情報ソースであるが、広くなり、ユーザフレンドリ性に欠けることが多い。
我々の新しいアプローチは、トピックモデリングと自然言語処理(NLP)にBERTopicの長所を利用して、APIドキュメントの要約を自動的に生成する。
論文 参考訳(メタデータ) (2023-08-17T15:57:12Z) - Private-Library-Oriented Code Generation with Large Language Models [52.73999698194344]
本稿では,大規模言語モデル(LLM)をプライベートライブラリのコード生成に活用することに焦点を当てる。
プログラマがプライベートコードを書く過程をエミュレートする新しいフレームワークを提案する。
TorchDataEval、TorchDataComplexEval、MonkeyEval、BeatNumEvalの4つのプライベートライブラリベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-28T07:43:13Z) - Calculating Originality of LLM Assisted Source Code [0.0]
本稿では,学生がソースコードを書く際の本来の取り組み(およびLLMの貢献)を決定するニューラルネットワークベースのツールを提案する。
我々のツールは、コルモゴロフ複雑性のような最小記述長測度によって動機付けられている。
論文 参考訳(メタデータ) (2023-07-10T11:30:46Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。