論文の概要: Calculating Originality of LLM Assisted Source Code
- arxiv url: http://arxiv.org/abs/2307.04492v1
- Date: Mon, 10 Jul 2023 11:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 17:53:39.874031
- Title: Calculating Originality of LLM Assisted Source Code
- Title(参考訳): LLM支援ソースコードの計算原性
- Authors: Shipra Sharma and Balwinder Sodhi
- Abstract要約: 本稿では,学生がソースコードを書く際の本来の取り組み(およびLLMの貢献)を決定するニューラルネットワークベースのツールを提案する。
我々のツールは、コルモゴロフ複雑性のような最小記述長測度によって動機付けられている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ease of using a Large Language Model (LLM) to answer a wide variety of
queries and their high availability has resulted in LLMs getting integrated
into various applications. LLM-based recommenders are now routinely used by
students as well as professional software programmers for code generation and
testing. Though LLM-based technology has proven useful, its unethical and
unattributed use by students and professionals is a growing cause of concern.
As such, there is a need for tools and technologies which may assist teachers
and other evaluators in identifying whether any portion of a source code is LLM
generated.
In this paper, we propose a neural network-based tool that instructors can
use to determine the original effort (and LLM's contribution) put by students
in writing source codes. Our tool is motivated by minimum description length
measures like Kolmogorov complexity. Our initial experiments with moderate
sized (up to 500 lines of code) have shown promising results that we report in
this paper.
- Abstract(参考訳): LLM(Large Language Model)を使用することで、さまざまなクエリに応答し、高い可用性を実現することで、LLMをさまざまなアプリケーションに統合することが可能になる。
llmベースのレコメンダは現在、コード生成とテストのために学生やプロのソフトウェアプログラマが日常的に使用している。
LLMベースの技術は有用であることが証明されているが、学生や専門家による非倫理的で無貢献な利用が懸念されている。
そのため、教師や他の評価者がソースコードの一部がllm生成されているかどうかを特定するのを助けるツールや技術が必要となる。
本稿では,学生がソースコードを書く際に行う取り組み(およびllmの貢献)を決定するために,インストラクタが使用できるニューラルネットワークベースのツールを提案する。
ツールの動機は,コルモゴロフ複雑性のような最小記述長尺度である。
中規模(最大500行のコード)での最初の実験は、この論文で報告した有望な結果を示している。
関連論文リスト
- Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
codellm-devkit (以下, CLDK') は,プログラム解析のプロセスを大幅に単純化したオープンソースライブラリである。
CLDKは開発者に対して直感的でユーザフレンドリなインターフェースを提供しています。
論文 参考訳(メタデータ) (2024-10-16T20:05:59Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Assured LLM-Based Software Engineering [51.003878077888686]
この記事では,2024年4月15日にポルトガルのリスボンで開催された International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering で,Mark Harman 氏による基調講演の内容の概要を紹介する。
論文 参考訳(メタデータ) (2024-02-06T20:38:46Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
大規模言語モデル(LLM)は人工知能の飛躍であり、人間の言語を用いたタスクに優れる。
本稿では、AI生成したコードを分析し、コード生成に使用するプロンプトと人間の介入レベルを分析し、コードをコードベースに統合する。
ソフトウェア開発の初期段階において,LSMが重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-01-29T14:32:32Z) - "Which LLM should I use?": Evaluating LLMs for tasks performed by Undergraduate Computer Science Students [2.6043678412433713]
本研究では,大学生に共通する作業における大規模言語モデル(LLM)の有効性を評価する。
私たちの研究は、Google Bard、ChatGPT(3.5)、GitHub Copilot Chat、Microsoft Copilot Chatなど、公開されているLLMのいくつかを体系的に評価しています。
論文 参考訳(メタデータ) (2024-01-22T15:11:36Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Lessons from Building StackSpot AI: A Contextualized AI Coding Assistant [2.268415020650315]
大規模言語モデル上に構築された新しいタイプのツールが登場しつつある。
これらのツールは、微調整やコンテキスト情報によるユーザプロンプトの強化といった手法を用いて、欠点を軽減することを目的としている。
論文 参考訳(メタデータ) (2023-11-30T10:51:26Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcotは、大規模言語モデルを呼び出すためのコンテキスト内学習技術である。
ゼロショットシナリオでは、一貫した正しいステップワイズプロンプトを達成する。
数学的推論とコモンセンス推論の実験を行う。
論文 参考訳(メタデータ) (2023-11-22T17:24:21Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
検証可能な生成は、大きな言語モデル(LLM)がドキュメントをサポートするテキストを生成することを目的としている。
本稿では,LLatrieval (Large Language Model Verified Retrieval)を提案する。
実験により、LLatrievalは幅広いベースラインを著しく上回り、最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2023-11-14T01:38:02Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
本研究は,オープンソースソフトウェアGreetlのハンスル(Hansl)という,econometricスクリプティング言語に焦点を当てたものである。
この結果から, LLMはグレタブルコードの記述, 理解, 改善, 文書化に有用なツールであることが示唆された。
論文 参考訳(メタデータ) (2023-07-24T17:17:13Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。