Plasmon-polaritons on a single electron
- URL: http://arxiv.org/abs/2412.00750v1
- Date: Sun, 01 Dec 2024 10:00:46 GMT
- Title: Plasmon-polaritons on a single electron
- Authors: I. M. Akimov, P. O. Kazinski, A. A. Sokolov,
- Abstract summary: This polarization operator describes the permittivity of a single electron wave packet in coherent scattering processes.<n>The wavelength of the external electromagnetic field is much smaller than the typical scale of variations of the electron wave packet.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The explicit expression for the photon polarization operator in the presence of a single electron is found in the $in$-$in$ formalism in the one-loop approximation out of the photon mass-shell. This polarization operator describes the dielectric permittivity of a single electron wave packet in coherent scattering processes. The plasmons and plasmon-polaritons supported by a single electron wave packet are described. The two limiting cases are considered: the wavelength of the external electromagnetic field is much smaller than the typical scale of variations of the electron wave packet and the wavelength of the external electromagnetic field is much larger than the size of the electron wave packet. In the former case, there are eight independent plasmon-polariton modes. In the latter case, the plasmons boil down to the dynamical dipole moment attached to a point electron. Thus, in the infrared limit, the electron possesses a dynamical electric dipole moment manifesting itself in coherent scattering processes.
Related papers
- Quantum optical scattering by macroscopic lossy objects: A general approach [55.2480439325792]
We develop a general approach to describe the scattering of quantum light by a lossy macroscopic object placed in vacuum.<n>We exploit the input-output relation to connect the output state of the field to the input one.<n>We analyze the impact of the classical transmission and absorption dyadics on the transitions from ingoing to outgoing s-polariton.
arXiv Detail & Related papers (2024-11-27T17:44:29Z) - Electrons herald non-classical light [0.44270590458998854]
We demonstrate the coherent parametric generation of non-classical states of light by free electrons.
We show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide.
The approach facilitates the tailored preparation of higher-number Fock and other optical quantum states.
arXiv Detail & Related papers (2024-09-17T15:55:54Z) - Electron-assisted manipulation of polaritonic light-matter states [0.0]
We investigate strong light-matter coupling through monochromatic and modulated electron wavepackets.
In particular, we consider an archetypal target, comprising a nanophotonic cavity next to a single two-level emitter.
We show the power of modulated electrons beams as quantum tools for the manipulation of polaritonic targets.
arXiv Detail & Related papers (2023-12-11T16:28:32Z) - Inelastic Electron Scattering at a Single-Beam Structured Light Wave [0.0]
We demonstrate the inelastic scattering of slow-electron wavepackets at a propagating Hermite-Gaussian light beam.
This effect opens up a new platform for manipulating the electron wavepacket by utilizing the vast landscape of structured electromagnetic fields.
arXiv Detail & Related papers (2022-12-20T14:04:22Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Self-trapping of slow electrons in the energy domain [0.0]
We show that slow electrons are subject to strong confinement in the energy domain due to the non-vanishing curvature of the electron dispersion.
The spectral trap is tunable and an appropriate choice of light field parameters can reduce the interaction dynamics to only two energy states.
arXiv Detail & Related papers (2022-09-29T15:07:11Z) - Coherent radiation of photons by particle wave packets [0.0]
The radiation of photons by electrons is investigated in the framework of quantum electrodynamics up to the second order in the coupling constant $e$.
Three processes are stimulated radiation by an electron, coherent radiation from a beam of particles, and reradiation of a photon in the Compton process.
arXiv Detail & Related papers (2022-05-29T12:23:17Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Paraxial wave function and Gouy phase for a relativistic electron in a
uniform magnetic field [68.8204255655161]
A connection between quantum mechanics and paraxial equations is established for a Dirac particle in external fields.
The paraxial form of the Landau eigenfunction for a relativistic electron in a uniform magnetic field is determined.
arXiv Detail & Related papers (2020-03-08T13:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.