Nature's Insight: A Novel Framework and Comprehensive Analysis of Agentic Reasoning Through the Lens of Neuroscience
- URL: http://arxiv.org/abs/2505.05515v1
- Date: Wed, 07 May 2025 14:25:46 GMT
- Title: Nature's Insight: A Novel Framework and Comprehensive Analysis of Agentic Reasoning Through the Lens of Neuroscience
- Authors: Zinan Liu, Haoran Li, Jingyi Lu, Gaoyuan Ma, Xu Hong, Giovanni Iacca, Arvind Kumar, Shaojun Tang, Lin Wang,
- Abstract summary: We propose a novel neuroscience-inspired framework for agentic reasoning.<n>We apply this framework to systematically classify and analyze existing AI reasoning methods.<n>We propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting.
- Score: 11.174550573411008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous AI is no longer a hard-to-reach concept, it enables the agents to move beyond executing tasks to independently addressing complex problems, adapting to change while handling the uncertainty of the environment. However, what makes the agents truly autonomous? It is agentic reasoning, that is crucial for foundation models to develop symbolic logic, statistical correlations, or large-scale pattern recognition to process information, draw inferences, and make decisions. However, it remains unclear why and how existing agentic reasoning approaches work, in comparison to biological reasoning, which instead is deeply rooted in neural mechanisms involving hierarchical cognition, multimodal integration, and dynamic interactions. In this work, we propose a novel neuroscience-inspired framework for agentic reasoning. Grounded in three neuroscience-based definitions and supported by mathematical and biological foundations, we propose a unified framework modeling reasoning from perception to action, encompassing four core types, perceptual, dimensional, logical, and interactive, inspired by distinct functional roles observed in the human brain. We apply this framework to systematically classify and analyze existing AI reasoning methods, evaluating their theoretical foundations, computational designs, and practical limitations. We also explore its implications for building more generalizable, cognitively aligned agents in physical and virtual environments. Finally, building on our framework, we outline future directions and propose new neural-inspired reasoning methods, analogous to chain-of-thought prompting. By bridging cognitive neuroscience and AI, this work offers a theoretical foundation and practical roadmap for advancing agentic reasoning in intelligent systems. The associated project can be found at: https://github.com/BioRAILab/Awesome-Neuroscience-Agent-Reasoning .
Related papers
- Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact [27.722167796617114]
This paper offers a cross-disciplinary synthesis of artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems.<n>We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination.<n>We identify key scientific, technical, and ethical challenges on the path to Artificial General Intelligence.
arXiv Detail & Related papers (2025-07-01T16:52:25Z) - Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - Continuum-Interaction-Driven Intelligence: Human-Aligned Neural Architecture via Crystallized Reasoning and Fluid Generation [1.5800607910450124]
Current AI systems face challenges including hallucination, unpredictability, and misalignment with human decision-making.<n>This study proposes a dual-channel intelligent architecture that integrates probabilistic generation (LLMs) with white-box procedural reasoning (chain-of-thought) to construct interpretable, continuously learnable, and human-aligned AI systems.
arXiv Detail & Related papers (2025-04-12T18:15:49Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Brain-Model Evaluations Need the NeuroAI Turing Test [4.525325675715108]
The classical test proposed by Alan Turing focuses on behavior, requiring that an artificial agent's behavior be indistinguishable from that of a human.<n>This position paper argues that the standard definition of the Turing Test is incomplete for NeuroAI.<n>It proposes a stronger framework called the NeuroAI Turing Test'', a benchmark that extends beyond behavior alone.
arXiv Detail & Related papers (2025-02-22T14:16:28Z) - Rethinking Cognition: Morphological Info-Computation and the Embodied Paradigm in Life and Artificial Intelligence [1.14219428942199]
This study aims to place Lorenzo Magnanis Eco-Cognitive Computationalism within the broader context of current work on information, computation, and cognition.<n>We model cognition as a web of concurrent morphological computations, driven by processes of self-assembly, self-organisation, and autopoiesis across physical, chemical, and biological domains.
arXiv Detail & Related papers (2024-12-01T10:04:53Z) - Metacognitive AI: Framework and the Case for a Neurosymbolic Approach [5.5441283041944]
We introduce a framework for understanding metacognitive artificial intelligence (AI) that we call TRAP: transparency, reasoning, adaptation, and perception.
We discuss each of these aspects in-turn and explore how neurosymbolic AI (NSAI) can be leveraged to address challenges of metacognition.
arXiv Detail & Related papers (2024-06-17T23:30:46Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
This paper considers an evolutionary approach to creating a cognitive functionality.
We consider a cognitive architecture which ensures the evolution of the agent on the basis of Symbol Emergence Problem solution.
arXiv Detail & Related papers (2022-07-02T12:41:32Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.