PGSO: Prompt-based Generative Sequence Optimization Network for Aspect-based Sentiment Analysis
- URL: http://arxiv.org/abs/2412.00763v1
- Date: Sun, 01 Dec 2024 10:49:55 GMT
- Title: PGSO: Prompt-based Generative Sequence Optimization Network for Aspect-based Sentiment Analysis
- Authors: Hao Dong, Wei Wei,
- Abstract summary: We introduce two sequence optimization strategies: the rule-based static optimization and the score-based dynamic optimization.
Based on the dynamic optimization structure, we propose a unified Prompt-based Generative Sequence Optimization network (named PGSO)
Experiments conducted on four ABSA tasks across multiple benchmarks indicate that PGSO outperforms state-of-the-art methods, with an average improvement of 3.52% in F1 score.
- Score: 9.617652261815671
- License:
- Abstract: Recently, generative pre-training based models have demonstrated remarkable results on Aspect-based Sentiment Analysis (ABSA) task. However, previous works overemphasize crafting various templates to paraphrase training targets for enhanced decoding, ignoring the internal optimizations on generative models. Despite notable results achieved by these target-oriented optimization methods, they struggle with the complicated long texts since the implicit long-distance relation, e.g., aspect-opinion relation, is difficult to extract under the position embedding mechanism in generative models. Thus, in this paper, we first clarify the causes of the problem and introduce two sequence optimization strategies: the rule-based static optimization and the score-based dynamic optimization. The rule-based approach relies on handcraft priority of dependency relation to reorder the context, while the score-based algorithm dynamically regulates the contextual sequence by calculating word position scores using neural network. Based on the dynamic optimization structure, we further propose a unified Prompt-based Generative Sequence Optimization network (named PGSO), which jointly optimizes the training target as well as the generative model. Specifically, PGSO contains two components, namely, prompt construction and sequence regulator. The former constructs a task-specific prompt based on unsupervised training objects to fully utilize the pre-trained model. The latter jointly leverages semantic, syntactic and original-sequence information to dynamically regulate contextual sequence. Our experiments conducted on four ABSA tasks across multiple benchmarks indicate that PGSO outperforms state-of-the-art methods, with an average improvement of 3.52% in F1 score.
Related papers
- Warmup Generations: A Task-Agnostic Approach for Guiding Sequence-to-Sequence Learning with Unsupervised Initial State Generation [34.55224347308013]
Traditional supervised fine-tuning (SFT) strategies for sequence-to-sequence tasks often train models to directly generate the target output.
We introduce a task-agnostic framework that enables models to generate intermediate "upwarm" sequences.
We show that our approach outperforms traditional SFT methods, and offers a scalable and flexible solution for sequence-to-sequence tasks.
arXiv Detail & Related papers (2025-02-17T20:23:42Z) - Evolutionary Pre-Prompt Optimization for Mathematical Reasoning [45.461506988071534]
This paper explores the optimization of example selection for designing effective chain-of-thought pre-prompts.
It shows that the choice of the algorithm, typically in favor of comparison-based methods such as evolutionary computation, significantly enhances efficacy and feasibility.
arXiv Detail & Related papers (2024-12-05T16:12:06Z) - PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking [0.0]
PRefLexOR combines preference optimization with concepts from Reinforcement Learning to enable models to self-teach.
We focus on applications in biological materials science and demonstrate the method in a variety of case studies.
arXiv Detail & Related papers (2024-10-16T08:46:26Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
preference alignment algorithms adjust LMs to align with the preferences of reward models, enhancing the desirability of the generated content.
With a 1.15B parameter LM-based TTS model, we demonstrate that preference alignment consistently improves intelligibility, speaker similarity, and proxy subjective evaluation scores.
arXiv Detail & Related papers (2024-09-19T01:58:19Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
We develop a capable Gradient-inspired Prompt-based GPO.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers [109.52244418498974]
We propose a novel textscAdmeta (textbfADouble exponential textbfMov averagtextbfE textbfAdaptive and non-adaptive momentum) framework.
We provide two implementations, textscAdmetaR and textscAdmetaS, the former based on RAdam and the latter based on SGDM.
arXiv Detail & Related papers (2023-07-02T18:16:06Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
Conceptually, LOCCO can be viewed as a form of self-learning where the semantic being trained is used to generate annotations for unlabeled text.
As an added bonus, the annotations produced by LOCCO can be trivially repurposed to train a neural text generation model.
arXiv Detail & Related papers (2023-05-31T16:47:20Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
We argue that the key to better performance lies in meaningful latent modality structures instead of perfect modality alignment.
Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization.
arXiv Detail & Related papers (2023-03-10T14:38:49Z) - Local and Global Context-Based Pairwise Models for Sentence Ordering [0.0]
In this paper, we put forward a set of robust local and global context-based pairwise ordering strategies.
Our proposed encoding method utilizes the paragraph's rich global contextual information to predict the pairwise order.
Analysis of the two proposed decoding strategies helps better explain error propagation in pairwise models.
arXiv Detail & Related papers (2021-10-08T17:57:59Z) - Simulated annealing for optimization of graphs and sequences [44.974718959154266]
We present SAGS, a novel Simulated Annealing framework for Graph and Sequence optimization.
We start by defining a sophisticated objective function, involving the property of interest and pre-defined constraints.
SAGS searches from the discrete space towards this objective by performing a sequence of local edits.
arXiv Detail & Related papers (2021-10-01T01:12:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.