Evolutionary Pre-Prompt Optimization for Mathematical Reasoning
- URL: http://arxiv.org/abs/2412.04291v1
- Date: Thu, 05 Dec 2024 16:12:06 GMT
- Title: Evolutionary Pre-Prompt Optimization for Mathematical Reasoning
- Authors: Mathurin Videau, Alessandro Leite, Marc Schoenauer, Olivier Teytaud,
- Abstract summary: This paper explores the optimization of example selection for designing effective chain-of-thought pre-prompts.
It shows that the choice of the algorithm, typically in favor of comparison-based methods such as evolutionary computation, significantly enhances efficacy and feasibility.
- Score: 45.461506988071534
- License:
- Abstract: Recent advancements have highlighted that large language models (LLMs), when given a small set of task-specific examples, demonstrate remarkable proficiency, a capability that extends to complex reasoning tasks. In particular, the combination of few-shot learning with the chain-of-thought (CoT) approach has been pivotal in steering models towards more logically consistent conclusions. This paper explores the optimization of example selection for designing effective CoT pre-prompts and shows that the choice of the optimization algorithm, typically in favor of comparison-based methods such as evolutionary computation, significantly enhances efficacy and feasibility. Specifically, thanks to a limited exploitative and overfitted optimization, Evolutionary Pre-Prompt Optimization (EPPO) brings an improvement over the naive few-shot approach exceeding 10 absolute points in exact match scores on benchmark datasets such as GSM8k and MathQA. These gains are consistent across various contexts and are further amplified when integrated with self-consistency (SC)
Related papers
- Primitive Agentic First-Order Optimization [0.0]
This work presents a proof-of-concept study combining primitive state representations and agent-environment interactions as first-order reinforcement learning.
The results show that elementary RL methods combined with succinct partial state representations can be used as optimizeds manage complexity in RL-based optimization.
arXiv Detail & Related papers (2024-06-07T11:13:38Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
This paper adopts a novel approach to deep learning optimization, focusing on gradient descent (SGD) and its variants.
We show that SGD and its variants demonstrate performance on par with flat-minimas like SAM, albeit with half the gradient evaluations.
Our study uncovers several key findings regarding the relationship between training loss and hold-out accuracy, as well as the comparable performance of SGD and noise-enabled variants.
arXiv Detail & Related papers (2024-03-01T14:55:22Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
This paper proposes a new formulation of the tuning problem, called consolidated learning.
In such settings, we are interested in the total optimization time rather than tuning for a single task.
We demonstrate the effectiveness of this approach through an empirical study for XGBoost algorithm and the collection of predictive tasks extracted from the MIMIC-IV medical database.
arXiv Detail & Related papers (2022-01-27T21:38:53Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.