A Wave is Worth 100 Words: Investigating Cross-Domain Transferability in Time Series
- URL: http://arxiv.org/abs/2412.00772v1
- Date: Sun, 01 Dec 2024 11:35:06 GMT
- Title: A Wave is Worth 100 Words: Investigating Cross-Domain Transferability in Time Series
- Authors: Xiangkai Ma, Xiaobin Hong, Wenzhong Li, Sanglu Lu,
- Abstract summary: This paper proposes a novel cross-domain pretraining method based on Wave Quantization (termed as WQ4TS)<n>We transfer the time series data from different domains into a common spectral latent space, and enable the model to learn the temporal pattern knowledge of different domains directly from the common space.<n>The proposed WQ4TS achieves the best performance on 87.5% of all tasks, and the average improvement of the metrics on all the tasks is up to 34.7%.
- Score: 13.555837288440946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series analysis is a fundamental data mining task that supervised training methods based on empirical risk minimization have proven their effectiveness on specific tasks and datasets. However, the acquisition of well-annotated data is costly and a large amount of unlabeled series data is under-utilized. Due to distributional shifts across various domains and different patterns of interest across multiple tasks. The problem of cross-domain multi-task migration of time series remains a significant challenge. To address these problems, this paper proposes a novel cross-domain pretraining method based on Wave Quantization (termed as WQ4TS), which can be combined with any advanced time series model and applied to multiple downstream tasks. Specifically, we transfer the time series data from different domains into a common spectral latent space, and enable the model to learn the temporal pattern knowledge of different domains directly from the common space and utilize it for the inference of downstream tasks, thereby mitigating the challenge of heterogeneous cross-domains migration. The establishment of spectral latent space brings at least three benefits, cross-domain migration capability thus adapting to zero- and few-shot scenarios without relying on priori knowledge of the dataset, general compatible cross-domain migration framework without changing the existing model structure, and robust modeling capability thus achieving SOTA results in multiple downstream tasks. To demonstrate the effectiveness of the proposed approach, we conduct extensive experiments including three important tasks: forecasting, imputation, and classification. And three common real-world data scenarios are simulated: full-data, few-shot, and zero-shot. The proposed WQ4TS achieves the best performance on 87.5% of all tasks, and the average improvement of the metrics on all the tasks is up to 34.7%.
Related papers
- UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
We introduce bfUnistage, a unified Transformer-based framework fortemporal modeling.
Our work demonstrates that a task-specific vision-text can build a generalizable model fortemporal learning.
We also introduce a temporal module to incorporate temporal dynamics explicitly.
arXiv Detail & Related papers (2025-03-26T17:33:23Z) - One for All: Multi-Domain Joint Training for Point Cloud Based 3D Object Detection [71.78795573911512]
We propose textbfOneDet3D, a universal one-for-all model that addresses 3D detection across different domains.
We propose the domain-aware in scatter and context, guided by a routing mechanism, to address the data interference issue.
The fully sparse structure and anchor-free head further accommodate point clouds with significant scale disparities.
arXiv Detail & Related papers (2024-11-03T14:21:56Z) - Towards Generalisable Time Series Understanding Across Domains [10.350643783811174]
We introduce OTiS, an open model for general time series analysis.
We propose a novel pre-training paradigm including a tokeniser with learnable domain-specific signatures.
Our model is pre-trained on a large corpus of 640,187 samples and 11 billion time points spanning 8 distinct domains.
arXiv Detail & Related papers (2024-10-09T17:09:30Z) - Uni$^2$Det: Unified and Universal Framework for Prompt-Guided Multi-dataset 3D Detection [64.08296187555095]
Uni$2$Det is a framework for unified and universal multi-dataset training on 3D detection.
We introduce multi-stage prompting modules for multi-dataset 3D detection.
Results on zero-shot cross-dataset transfer validate the generalization capability of our proposed method.
arXiv Detail & Related papers (2024-09-30T17:57:50Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - NuwaTS: a Foundation Model Mending Every Incomplete Time Series [24.768755438620666]
We present textbfNuwaTS, a novel framework that repurposes Pre-trained Language Models for general time series imputation.
NuwaTS can be applied to impute missing data across any domain.
We show that NuwaTS generalizes to other time series tasks, such as forecasting.
arXiv Detail & Related papers (2024-05-24T07:59:02Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
Time-series analysis plays a pivotal role across a range of critical applications, from finance to healthcare.
Traditional supervised learning methods first annotate extensive labels for time-series data in each task.
This paper introduces UniCL, a universal and scalable contrastive learning framework designed for pretraining time-series foundation models.
arXiv Detail & Related papers (2024-05-17T07:47:11Z) - Cross-Domain Pre-training with Language Models for Transferable Time Series Representations [32.8353465232791]
CrossTimeNet is a novel cross-domain SSL learning framework to learn transferable knowledge from various domains.
One of the key characteristics of CrossTimeNet is the newly designed time series tokenization module.
We conduct extensive experiments in a real-world scenario across various time series classification domains.
arXiv Detail & Related papers (2024-03-19T02:32:47Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Cross-domain Time Series Forecasting with Attention Sharing [10.180248006928107]
We propose a novel domain adaptation framework,Domain Adaptation Forecaster (DAF), to cope with the issue of data scarcity.
In particular, we pro-pose an attention-based shared module with a do-main discriminator across domains as well as pri-vate modules for individual domains.
This allowsus to jointly train the source and target domains bygenerating domain-invariant latent features whileretraining domain-specific features.
arXiv Detail & Related papers (2021-02-13T00:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.