論文の概要: Alpha Mining and Enhancing via Warm Start Genetic Programming for Quantitative Investment
- arxiv url: http://arxiv.org/abs/2412.00896v1
- Date: Sun, 01 Dec 2024 17:13:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:46:45.226955
- Title: Alpha Mining and Enhancing via Warm Start Genetic Programming for Quantitative Investment
- Title(参考訳): 量的投資のための温暖化開始型遺伝的プログラミングによるアルファマイニングとエンハンシング
- Authors: Weizhe Ren, Yichen Qin, Yang Li,
- Abstract要約: 伝統的遺伝プログラミング(GP)は、しばしばストックアルファ因子発見に苦しむ。
GPはランダムな探索よりも,将来性のある領域に注目する方が優れている。
- 参考スコア(独自算出の注目度): 3.4196842063159076
- License:
- Abstract: Traditional genetic programming (GP) often struggles in stock alpha factor discovery due to its vast search space, overwhelming computational burden, and sporadic effective alphas. We find that GP performs better when focusing on promising regions rather than random searching. This paper proposes a new GP framework with carefully chosen initialization and structural constraints to enhance search performance and improve the interpretability of the alpha factors. This approach is motivated by and mimics the alpha searching practice and aims to boost the efficiency of such a process. Analysis of 2020-2024 Chinese stock market data shows that our method yields superior out-of-sample prediction results and higher portfolio returns than the benchmark.
- Abstract(参考訳): 従来の遺伝的プログラミング(GP)は、膨大な探索空間、圧倒的な計算負担、散発的な有効なアルファの発見に苦しむことが多い。
GPはランダムな探索よりも,将来性のある領域に注目する方が優れている。
本稿では,検索性能の向上とα因子の解釈性向上のために,慎重に選択された初期化と構造制約を備えた新しいGPフレームワークを提案する。
このアプローチはアルファサーチの実践を模倣し、そのようなプロセスの効率を高めることを目的としている。
2020-2024年の中国株式市場のデータから、我々の手法は、ベンチマークよりも優れたサンプル外予測結果とポートフォリオのリターンをもたらすことが示されている。
関連論文リスト
- QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE [5.560011325936085]
アルファ・ファクター・マイニングの目標は、資産の歴史的金融市場データから投資機会の示唆的なシグナルを発見することである。
近年, 深層強化学習を用いた定式化α因子の生成に期待できる枠組みが提案されている。
論文 参考訳(メタデータ) (2024-09-08T15:57:58Z) - AlphaForge: A Framework to Mine and Dynamically Combine Formulaic Alpha Factors [14.80394452270726]
本稿では,アルファ因子マイニングと因子組み合わせのための2段階のアルファ生成フレームワークAlphaForgeを提案する。
実世界のデータセットを用いて行った実験により,我々の提案したモデルは,定式的アルファファクターマイニングにおいて,同時代のベンチマークより優れていることが示された。
論文 参考訳(メタデータ) (2024-06-26T14:34:37Z) - $\text{Alpha}^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning [28.491587815128575]
深部強化学習(DRL)を用いたアルファ発見のための新しい枠組みを提案する。
DRLでガイドされた探索アルゴリズムは、潜在的なアルファ結果の値推定に基づいて探索空間をナビゲートする。
実世界の株式市場での実証実験は、さまざまな論理的かつ効果的なアルファを識別するtextAlpha2$の能力を実証している。
論文 参考訳(メタデータ) (2024-06-24T10:21:29Z) - Synergistic Formulaic Alpha Generation for Quantitative Trading based on Reinforcement Learning [1.3194391758295114]
本稿では,既存のアルファファクタマイニング手法を探索空間を拡張して拡張する手法を提案する。
モデルの性能評価指標として,情報係数 (IC) とランク情報係数 (Rank IC) を用いる。
論文 参考訳(メタデータ) (2024-01-05T08:49:13Z) - Discovering General Reinforcement Learning Algorithms with Adversarial
Environment Design [54.39859618450935]
メタ学習型更新ルールは,広範囲のRLタスクで良好に機能するアルゴリズムの発見を期待して,実現可能であることを示す。
Learned Policy Gradient (LPG)のようなアルゴリズムによる印象的な初期結果にもかかわらず、これらのアルゴリズムが目に見えない環境に適用される場合、まだギャップが残っている。
本研究では,メタ教師付き学習分布の特性が,これらのアルゴリズムの性能に与える影響について検討する。
論文 参考訳(メタデータ) (2023-10-04T12:52:56Z) - Generating Synergistic Formulaic Alpha Collections via Reinforcement
Learning [20.589583396095225]
我々は、相乗的なアルファの集合のマイニングを優先する新しいアルファマイニングフレームワークを提案する。
我々のフレームワークは、これまでのアプローチよりも高いリターンを達成することができることを示す。
論文 参考訳(メタデータ) (2023-05-25T13:41:07Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform
Successive Halving [74.61723678821049]
予算の浪費を回避するため,早期に性能の低いアーキテクチャのトレーニングを終了する階層的スケジューリングアルゴリズムであるNOn-uniform Successive Halving (NOSH)を提案する。
予測器に基づくアーキテクチャ探索をペア比較でランク付けする学習として定式化する。
その結果、RANK-NOSHは検索予算を5倍に削減し、様々な空間やデータセットにおける従来の最先端予測手法よりも、競争力やパフォーマンスの向上を実現した。
論文 参考訳(メタデータ) (2021-08-18T07:45:21Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
我々は、期待される性能とリスクのバランスをとるために、新しいポリシー勾配スタイルのロバスト最適化手法PG-BROILを導出する。
その結果,PG-BROILはリスクニュートラルからリスク・アバースまでの行動のファミリを創出できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-11T16:49:15Z) - Alpha-Refine: Boosting Tracking Performance by Precise Bounding Box
Estimation [85.22775182688798]
この研究はAlpha-Refineと呼ばれる新しい、柔軟で正確な改良モジュールを提案する。
これにより、ベーストラッカーのボックス推定品質が大幅に向上する。
TrackingNet, LaSOT, GOT-10K, VOT 2020 ベンチマークの実験では,我々のアプローチがベーストラッカのパフォーマンスを大幅に改善し,遅延がほとんどなかった。
論文 参考訳(メタデータ) (2020-12-12T13:33:25Z) - Implementation Matters in Deep Policy Gradients: A Case Study on PPO and
TRPO [90.90009491366273]
本稿では,2つの一般的なアルゴリズムのケーススタディにより,ディープポリシー勾配アルゴリズムにおけるアルゴリズムの進歩のルーツについて検討する。
具体的には,「コードレベルの最適化」の結果について検討する。
以上の結果から, (a) TRPOに対するPPOの累積報酬のほとんどを担っていることが示され, (b) RL メソッドの動作方法が根本的に変化していることが示唆された。
論文 参考訳(メタデータ) (2020-05-25T16:24:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。