論文の概要: Tomographic SAR Reconstruction for Forest Height Estimation
- arxiv url: http://arxiv.org/abs/2412.00903v2
- Date: Tue, 03 Dec 2024 16:32:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:45:34.367089
- Title: Tomographic SAR Reconstruction for Forest Height Estimation
- Title(参考訳): 森林高度推定のためのトモグラフィSAR再構成
- Authors: Grace Colverd, Jumpei Takami, Laura Schade, Karol Bot, Joseph A. Gallego-Mejia,
- Abstract要約: 樹高推定は、生態学および森林学の応用において、バイオマス推定の重要な指標となる。
本研究では,SAR(Synthetic Aperture Radar)の派生である2Dシングルルックコンプレックス(SLC)画像から直接,深層学習を用いて林冠の高さを推定する。
本手法は,従来のトモグラフィ信号処理を回避し,SARキャプチャからエンド製品への遅延を低減する。
- 参考スコア(独自算出の注目度): 4.1942958779358674
- License:
- Abstract: Tree height estimation serves as an important proxy for biomass estimation in ecological and forestry applications. While traditional methods such as photogrammetry and Light Detection and Ranging (LiDAR) offer accurate height measurements, their application on a global scale is often cost-prohibitive and logistically challenging. In contrast, remote sensing techniques, particularly 3D tomographic reconstruction from Synthetic Aperture Radar (SAR) imagery, provide a scalable solution for global height estimation. SAR images have been used in earth observation contexts due to their ability to work in all weathers, unobscured by clouds. In this study, we use deep learning to estimate forest canopy height directly from 2D Single Look Complex (SLC) images, a derivative of SAR. Our method attempts to bypass traditional tomographic signal processing, potentially reducing latency from SAR capture to end product. We also quantify the impact of varying numbers of SLC images on height estimation accuracy, aiming to inform future satellite operations and optimize data collection strategies. Compared to full tomographic processing combined with deep learning, our minimal method (partial processing + deep learning) falls short, with an error 16-21\% higher, highlighting the continuing relevance of geometric signal processing.
- Abstract(参考訳): 樹高推定は、生態学および森林学の応用において、バイオマス推定の重要な指標となる。
測光法や光検出・測光法(LiDAR)のような従来の手法は正確な高度測定を提供するが、グローバルスケールでの応用はコストが抑えられ、論理的にも困難であることが多い。
対照的に、リモートセンシング技術、特に合成開口レーダ(SAR)画像からの3次元トモグラフィ再構成は、グローバルな高さ推定のためのスケーラブルなソリューションを提供する。
SAR画像は、雲によって観測されない全ての天候で作業する能力のため、地球観測の文脈で使われてきた。
本研究では,SARの派生である2Dシングルルックコンプレックス(SLC)画像から直接,深層学習を用いて林冠の高さを推定する。
本手法は,従来のトモグラフィ信号処理を回避し,SARキャプチャからエンド製品への遅延を低減する。
また,各種のSLC画像が高度推定精度に与える影響を定量化し,将来の衛星操作を知らせ,データ収集戦略を最適化することを目的とする。
深層学習と組み合わせたフルトモグラフィ処理と比較して、最小限の手法(部分処理と深層学習)は16~21倍の誤差で不足しており、幾何学的信号処理の継続的な関連性を強調している。
関連論文リスト
- 3D-SAR Tomography and Machine Learning for High-Resolution Tree Height Estimation [4.1942958779358674]
バイオマス計算の鍵となる木の高さは、合成開口レーダ(SAR)技術を用いて測定することができる。
本研究では,2つのSAR製品から森林高度データを抽出するために機械学習を適用した。
我々は,ドイツのアイフェル国立公園のSARおよびLiDARデータを含むTtomoSenseデータセットを用いて,標高推定モデルの開発と評価を行った。
論文 参考訳(メタデータ) (2024-09-09T14:07:38Z) - CATSNet: a context-aware network for Height Estimation in a Forested Area based on Pol-TomoSAR data [4.9793121278328]
この研究は、CATSNetというコンテキスト対応のディープラーニングベースのソリューションを定義している。
畳み込みニューラルネットワークは、パッチベースの情報を活用し、単一のピクセルに注目するのではなく、近隣から特徴を抽出すると考えられる。
実験結果から,複数基線(MB)のTtomoSARデータ内のコンテキスト情報を活用することで,従来の手法を超越した性能と能力の両面で,顕著な優位性を示した。
論文 参考訳(メタデータ) (2024-03-29T16:27:40Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRMは、6Dポーズ改善のための新しいリカレントネットワークアーキテクチャである。
アーキテクチャにはLSTMユニットが組み込まれ、各改善ステップを通じて情報を伝達する。
DeepRMは、2つの広く受け入れられている課題データセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-28T16:18:08Z) - Guided deep learning by subaperture decomposition: ocean patterns from
SAR imagery [36.922471841100176]
センチネル1 SAR 波動モードのヴィグネットは、2014年以来、多くの重要な海洋現象や大気現象を捉えてきた。
本研究では,SAR深層学習モデルの事前処理段階としてサブアパーチャ分解を適用することを提案する。
論文 参考訳(メタデータ) (2022-04-09T09:49:05Z) - Deep-Learning-Based Single-Image Height Reconstruction from
Very-High-Resolution SAR Intensity Data [1.7894377200944511]
本稿では,リモートセンシングにおける他の重要なセンサモードである合成開口レーダ(SAR)データに対する,深層学習に基づく単一画像の高さ予測の初めての実演を示す。
SAR強度画像に対する畳み込みニューラルネットワーク(CNN)アーキテクチャの適用に加えて、トレーニングデータ生成のためのワークフローを提案する。
転送可能性に特に重点を置いているので、深層学習に基づく単一画像の高さ推定が可能であるだけでなく、目に見えないデータにかなりうまく転送可能であることを確認できます。
論文 参考訳(メタデータ) (2021-11-03T08:20:03Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of
Satellite Images [54.44842669325082]
本研究は,超解像(SR)による画質向上により,画質と価格のギャップを埋めることを提案する。
低解像度画像の各パッチの地域情報内容を解析するSRフレームワークを設計する。
本研究では,既存の深部SR法と同等の性能を示しながら,推定時間を大幅に減少させることを示した。
論文 参考訳(メタデータ) (2020-08-03T13:55:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。