論文の概要: CATSNet: a context-aware network for Height Estimation in a Forested Area based on Pol-TomoSAR data
- arxiv url: http://arxiv.org/abs/2403.20273v1
- Date: Fri, 29 Mar 2024 16:27:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 15:05:12.212522
- Title: CATSNet: a context-aware network for Height Estimation in a Forested Area based on Pol-TomoSAR data
- Title(参考訳): CATSNet : Pol-TomoSARデータに基づく森林地帯における高度推定のための文脈認識ネットワーク
- Authors: Wenyu Yang, Sergio Vitale, Hossein Aghababaei, Giampaolo Ferraioli, Vito Pascazio, Gilda Schirinzi,
- Abstract要約: この研究は、CATSNetというコンテキスト対応のディープラーニングベースのソリューションを定義している。
畳み込みニューラルネットワークは、パッチベースの情報を活用し、単一のピクセルに注目するのではなく、近隣から特徴を抽出すると考えられる。
実験結果から,複数基線(MB)のTtomoSARデータ内のコンテキスト情報を活用することで,従来の手法を超越した性能と能力の両面で,顕著な優位性を示した。
- 参考スコア(独自算出の注目度): 4.9793121278328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tropical forests are a key component of the global carbon cycle. With plans for upcoming space-borne missions like BIOMASS to monitor forestry, several airborne missions, including TropiSAR and AfriSAR campaigns, have been successfully launched and experimented. Typical Synthetic Aperture Radar Tomography (TomoSAR) methods involve complex models with low accuracy and high computation costs. In recent years, deep learning methods have also gained attention in the TomoSAR framework, showing interesting performance. Recently, a solution based on a fully connected Tomographic Neural Network (TSNN) has demonstrated its effectiveness in accurately estimating forest and ground heights by exploiting the pixel-wise elements of the covariance matrix derived from TomoSAR data. This work instead goes beyond the pixel-wise approach to define a context-aware deep learning-based solution named CATSNet. A convolutional neural network is considered to leverage patch-based information and extract features from a neighborhood rather than focus on a single pixel. The training is conducted by considering TomoSAR data as the input and Light Detection and Ranging (LiDAR) values as the ground truth. The experimental results show striking advantages in both performance and generalization ability by leveraging context information within Multiple Baselines (MB) TomoSAR data across different polarimetric modalities, surpassing existing techniques.
- Abstract(参考訳): 熱帯林は地球規模の炭素循環の重要な要素である。
BIOMASSのような宇宙からの森林監視ミッションの計画により、トロピSARやAfriSARなどの飛行ミッションは成功し、実験されている。
典型的な合成開口レーダトモグラフィ(TomoSAR)法は、精度が低く計算コストが高い複雑なモデルを含む。
近年,TtomoSARフレームワークにもディープラーニング手法が注目されており,興味深い性能を示している。
近年,TtomoSARデータから得られた共分散行列の画素単位の要素を利用して,森林と地盤の高さを正確に推定する手法の有効性が実証されている。
この作業は、CATSNetというコンテキスト対応のディープラーニングベースのソリューションを定義するために、ピクセルワイズアプローチを越えている。
畳み込みニューラルネットワークは、パッチベースの情報を活用し、単一のピクセルに注目するのではなく、近隣から特徴を抽出すると考えられる。
このトレーニングは、TtomoSARデータを入力とし、LiDAR(Light Detection and Ranging)値を基底真理とする。
実験結果から,複数基線(MB)のTtomoSARデータ内のコンテキスト情報を活用することで,従来の手法を超越して,性能と一般化の両面で有意な優位性を示した。
関連論文リスト
- SAFE: a SAR Feature Extractor based on self-supervised learning and masked Siamese ViTs [5.961207817077044]
マスク付きシームズ・ビジョン・トランスフォーマーをベースとした新しい自己教師型学習フレームワークを提案し,SAFEと命名された汎用SAR機能エクストラクタを提案する。
提案手法は,厳密で一般化可能な特徴を抽出し,ラベルのないSARデータに基づいてモデルを訓練するために,対照的な学習原理を利用する。
サブアパーチャ分解や非特異化など,SAR画像特有のデータ拡張技術を導入する。
我々のネットワークは、評価に使用されるセンサーの訓練を受けなくても、数ショットの分類やセグメンテーションタスクにおいて、他の最先端の手法と競合したり、超えたりしています。
論文 参考訳(メタデータ) (2024-06-30T23:11:20Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
スペックルはSAR画像を劣化させるため、リモートセンシングにおいて重要な問題である。
近年の研究では、畳み込みニューラルネットワーク(CNN)が古典的解法よりも優れていることが示されている。
本研究は、受容場を制限することで低レベルの特徴を学習することに集中するために、過剰なCNNアーキテクチャを用いる。
本稿では,合成および実SAR画像の非特定化手法と比較して,提案手法により非特定化性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-31T15:55:37Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
我々は、Cross-Modal Message Propagation Network (CMMPNet)と呼ばれる新しいニューラルネットワークフレームワークを紹介する。
CMMPNetは、モダリティ固有の表現学習のための2つのディープオートエンコーダと、クロスモーダル表現洗練のためのテーラー設計のデュアルエンハンスメントモジュールで構成されている。
実世界の3つのベンチマーク実験により, CMMPNetによる堅牢な道路抽出の有効性が示された。
論文 参考訳(メタデータ) (2021-11-30T04:30:10Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3NetはLiDARポイントクラウドセマンティックセグメンテーションのための新しい畳み込みニューラルネットワークである。
sparse intra-channel attention module (sintraam)とsparse inter-channel attention module (sinteram)で構成されるエンコーダ-デコーダバックボーンを採用する。
論文 参考訳(メタデータ) (2021-03-15T22:15:24Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
LiDARデータ上でディープニューラルネットワーク(DNN)をトレーニングするには、大規模なポイントワイドアノテーションが必要である。
シミュレーション・トゥ・リアル・ドメイン適応(SRDA)は、DNNを無制限の合成データと自動生成されたラベルで訓練する。
ePointDAは、自己教師付きドロップアウトノイズレンダリング、統計不変および空間適応型特徴アライメント、転送可能なセグメンテーション学習の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2020-09-07T23:46:08Z) - Multi-Subspace Neural Network for Image Recognition [33.61205842747625]
画像分類タスクでは, 特徴抽出は常に大きな問題であり, クラス内変動により抽出器の設計が困難になる。
近年、ディープラーニングはデータから機能を自動的に学習することに多くの注意を払っている。
本研究では,畳み込みニューラルネットワーク(CNN)のキーコンポーネントをサブスペースの概念と組み合わせたマルチサブスペースニューラルネットワーク(MSNN)を提案する。
論文 参考訳(メタデータ) (2020-06-17T02:55:34Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
本稿では,3Dポイントのクラウド上で動作し,エンド・ツー・エンドのアプローチを用いてシーンの基盤となるDTMを推定するアルゴリズムを提案する。
我々のモデルは近隣情報を学習し、これをポイントワイドでブロックワイドなグローバルな特徴とシームレスに統合する。
論文 参考訳(メタデータ) (2020-05-21T15:54:55Z) - Weakly-supervised land classification for coastal zone based on deep convolutional neural networks by incorporating dual-polarimetric characteristics into training dataset [1.0494061710470493]
本研究では, 空間偏光合成開口レーダ(PolSAR)を用いた意味的セグメンテーションにおけるDCNNの性能について検討する。
PolSARデータを用いたセマンティックセグメンテーションタスクは、SARデータの特徴とアノテート手順が考慮されている場合、弱い教師付き学習に分類することができる。
次に、SegNet、U-Net、LinkNetを含む3つのDCNNモデルが実装されている。
論文 参考訳(メタデータ) (2020-03-30T17:32:49Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
都市景観のロバストなセマンティックセマンティックセグメンテーションのためのリアルタイムDCNNに基づく高速DCNN手法を提案する。
提案手法は, 51.0 fps と 39.3 fps の推論速度で, 平均 73.6% と平均 68.0% (mIoU) の精度を実現する。
論文 参考訳(メタデータ) (2020-03-11T08:45:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。