論文の概要: Token Cropr: Faster ViTs for Quite a Few Tasks
- arxiv url: http://arxiv.org/abs/2412.00965v1
- Date: Sun, 01 Dec 2024 20:58:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:48:28.237186
- Title: Token Cropr: Faster ViTs for Quite a Few Tasks
- Title(参考訳): Token Cropr: 少しのタスクでより高速なViT
- Authors: Benjamin Bergner, Christoph Lippert, Aravindh Mahendran,
- Abstract要約: 本稿では,タスク関連性に基づいてトークンをエンドツーエンドに選択する方法を学習する補助予測ヘッドを用いたトークンプルーナを提案する。
画像分類,セマンティックセグメンテーション,オブジェクト検出,インスタンスセグメンテーションについて評価し,1.5~4倍の性能低下を示す。
- 参考スコア(独自算出の注目度): 12.97062850155708
- License:
- Abstract: The adoption of Vision Transformers (ViTs) in resource-constrained applications necessitates improvements in inference throughput. To this end several token pruning and merging approaches have been proposed that improve efficiency by successively reducing the number of tokens. However, it remains an open problem to design a token reduction method that is fast, maintains high performance, and is applicable to various vision tasks. In this work, we present a token pruner that uses auxiliary prediction heads that learn to select tokens end-to-end based on task relevance. These auxiliary heads can be removed after training, leading to throughput close to that of a random pruner. We evaluate our method on image classification, semantic segmentation, object detection, and instance segmentation, and show speedups of 1.5 to 4x with small drops in performance. As a best case, on the ADE20k semantic segmentation benchmark, we observe a 2x speedup relative to the no-pruning baseline, with a negligible performance penalty of 0.1 median mIoU across 5 seeds.
- Abstract(参考訳): リソース制約のあるアプリケーションにおけるビジョントランスフォーマー(ViT)の採用は、推論スループットの改善を必要とする。
この目的のために、トークンの数を連続的に減らして効率を向上させるために、いくつかのトークンプルーニングとマージ手法が提案されている。
しかし、高速で高い性能を維持し、様々な視覚タスクに適用可能なトークン削減手法を設計することは、依然として未解決の問題である。
本研究では,タスク関連性に基づいてトークンをエンドツーエンドに選択する方法を学習する補助予測ヘッドを用いたトークンプルーナを提案する。
これらの補助ヘッドは訓練後に取り外すことができ、ランダムプルーナーに近いスループットが得られる。
画像分類,セマンティックセグメンテーション,オブジェクト検出,インスタンスセグメンテーションについて評価し,1.5~4倍の性能低下を示す。
ADE20kセマンティックセマンティックセグメンテーションのベンチマークでは,5種の種子中0.1mIoUの無作為な性能ペナルティで,無作為なベースラインに対して2倍のスピードアップが観察された。
関連論文リスト
- Token Compensator: Altering Inference Cost of Vision Transformer without Re-Tuning [63.43972993473501]
視覚変換器(ViT)の訓練と推論を高速化するトークン圧縮
しかし、下流タスクに適用した場合、圧縮度はトレーニングと推論の段階で不一致となる。
本稿では,2段階間の圧縮度を分離するモデル演算フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T10:36:43Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
視覚変換器 (ViT) は、その優れた性能のため、視覚タスクの一般的なアーキテクチャとして登場した。
本稿では,画像の異なる領域に対して,その重要度に応じて適応分解能を適用することを提案する。
提案手法を3つの異なるデータセット上で評価し,有望な性能を観察する。
論文 参考訳(メタデータ) (2023-11-02T12:48:43Z) - No Token Left Behind: Efficient Vision Transformer via Dynamic Token
Idling [55.203866875294516]
視覚変換器(ViT)はコンピュータビジョンタスクにおいて優れた性能を示した。
ViTの計算負担を軽減するために,様々なトークンプルーニング技術が導入されている。
性能と効率の優れたトレードオフを実現するための動的トークンアイドルベースのIdleViTを提案する。
論文 参考訳(メタデータ) (2023-10-09T12:10:41Z) - Prune Spatio-temporal Tokens by Semantic-aware Temporal Accumulation [89.88214896713846]
STAスコアは、時間的冗長性と意味的重要性の2つの重要な要因を考慮に入れている。
市販のビデオトランスフォーマーとビデオウィンにSTAモジュールを適用する。
結果: Kinetics-400 と something-Something V2 は 30% のオーバーシェルフ削減を実現し,0.2% の精度低下を実現した。
論文 参考訳(メタデータ) (2023-08-08T19:38:15Z) - Revisiting Token Pruning for Object Detection and Instance Segmentation [25.3324628669201]
オブジェクトとインスタンスのセグメンテーションの推論を高速化するトークンプルーニングについて検討する。
従来のトークンプルーニング法と比較して,ボックス・マスクともに1.5mAPから0.3mAPに低下した。
論文 参考訳(メタデータ) (2023-06-12T11:55:33Z) - Token Sparsification for Faster Medical Image Segmentation [37.25161294917211]
セグメント化をスパース符号化 ->トークン補完 -> 密度復号化(SCD)パイプラインとして再構成する。
STPは軽量なサブネットワークで重要度を予測し、トップKトークンをサンプリングする。
MTAはスパース出力トークンとプルーニングされた多層中間トークンの両方を組み立てることで、完全なトークンシーケンスを復元する。
論文 参考訳(メタデータ) (2023-03-11T23:59:13Z) - Fast-iTPN: Integrally Pre-Trained Transformer Pyramid Network with Token
Migration [138.24994198567794]
ITPNは2つの精巧な設計で生まれ、1)視覚変換器を用いた最初の事前訓練型特徴ピラミッド(ViT)である。
Fast-iTPNは推論手順を最大70%高速化でき、性能損失は無視できる。
論文 参考訳(メタデータ) (2022-11-23T06:56:12Z) - Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully
Exploiting Self-Attention [36.90363317158731]
最小限のコストで適応的なスパーストークンプルーニングフレームワークを提案する。
提案手法では,DeiT-Sのスループットを50%向上し,トップ1の精度は0.2%低下した。
論文 参考訳(メタデータ) (2022-09-28T03:07:32Z) - Learned Token Pruning for Transformers [39.181816379061374]
Learned Token Pruning ()メソッドは、データがトランスフォーマーの異なるレイヤを通過すると、冗長なトークンを減らす。
複数のGLUEタスクに対して,提案手法の性能を広範囲に検証する。
予備的な結果はTesla T4とIntel Haswellの1.4倍と1.9倍のスループット向上を示す。
論文 参考訳(メタデータ) (2021-07-02T09:00:13Z) - Parameter-Efficient Transfer Learning with Diff Pruning [108.03864629388404]
diff pruningは、プリトレイン・ファインチューンフレームワーク内でパラメータ効率の高い転送学習を可能にするシンプルなアプローチです。
diff pruningで微調整されたモデルは、GLUEベンチマークで完全に微調整されたベースラインのパフォーマンスと一致します。
論文 参考訳(メタデータ) (2020-12-14T12:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。