論文の概要: Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA
- arxiv url: http://arxiv.org/abs/2412.01004v6
- Date: Wed, 08 Oct 2025 07:30:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 14:21:17.8976
- Title: Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA
- Title(参考訳): 適応的ランク, 減量予測:動的ランク選択ロラを用いた連続学習型視覚言語モデルにおける知識保持
- Authors: Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, Dong Gong,
- Abstract要約: 低ランク学習を研究し,LoRAのランクや配置が学習や忘れにどのように影響するかを分析した。
上位のLoRAはタスク学習(塑性)を改善するが、下位のLoRAは安定性を高めるが適応を制限する。
そこで我々は,適応的に最適化されたLoRAアダプタを用いてPTMを継続的に更新する連続動的ランク選択LoRA(CoDyRA)を提案する。
- 参考スコア(独自算出の注目度): 26.079123341965687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning (CL) aims to accumulate knowledge from sequential tasks without catastrophic forgetting. Vision-language models such as CLIP, with strong generalization, are widely used for CL. Existing methods often adapt isolated PTM components, increasing inference complexity and limiting model improvement, or rely on replay, stored data, or assumptions, leading to high costs and limited applicability. To advance models as continual learners, we explore CL through natural and efficient PTM updates rather than complex task-specific additions. We study continual low-rank learning and analyze how LoRA ranks and placements affect learning and forgetting. A higher-rank LoRA improves task learning (plasticity) but increases forgetting, while a lower-rank LoRA enhances stability but limits adaptation. We observe a plasticity-stability balance tied to rank across parameters and tasks, with moderately small ranks maximizing CL benefits. Motivated by this, we propose Continual Dynamic Rank-Selective LoRA (CoDyRA), which continually updates PTMs with LoRA adapters of adaptively optimized ranks. The new-task objective drives learning, while sparsity-promoting regularization minimizes ranks to reduce interference and forgetting, achieving a balance tailored to each parameter and task. Although all parameters are updated, the minimized ranks keep the model close to its prior state while enabling effective new-task learning. CoDyRA performs efficient CL as a sequence of LoRA-based updates without storing past data or relying on assumptions, preserving the original model architecture and adding no inference overhead. Experiments show CoDyRA improves new representations while retaining old knowledge, achieving state-of-the-art results. Code is available at https://github.com/jeff024/codyra.
- Abstract(参考訳): 連続学習(CL)は、破滅的な忘れをすることなく、逐次的なタスクから知識を蓄積することを目的としている。
CLIPのようなビジョン言語モデルは、強力な一般化を持つが、CLには広く使われている。
既存のメソッドは、しばしば分離されたPTMコンポーネントに適応し、推論の複雑さを増大させ、モデルの改善を制限する。
連続学習者としてのモデルを推し進めるために、複雑なタスク固有の追加ではなく、自然かつ効率的なPTM更新を通じてCLを探索する。
連続的な低ランク学習について検討し,LoRAのランクや配置が学習や忘れに及ぼす影響を分析する。
上位のLoRAはタスク学習(塑性)を改善するが、下位のLoRAは安定性を高めるが適応を制限する。
可塑性と安定性のバランスをパラメータやタスクのランクに結び付けて観察し,CLの利点を最大化する。
そこで我々は,適応的に最適化されたLoRAアダプタを用いてPTMを継続的に更新する連続動的ランク選択LoRA(CoDyRA)を提案する。
新しいタスクの目的は学習を駆動し、スパーシティプロモーティングの正規化はランクを最小化し、干渉と忘れを減らし、各パラメータとタスクに合わせて調整されたバランスを達成する。
すべてのパラメータは更新されるが、最小限のランクはモデルが従来の状態に近づきつつ、効果的な新しいタスク学習を可能にしている。
CoDyRAは、過去のデータを保存したり仮定に依存することなく、LoRAベースの更新のシーケンスとして効率的なCLを実行する。
実験では、CoDyRAは古い知識を維持しながら新しい表現を改善し、最先端の結果を達成する。
コードはhttps://github.com/jeff024/codyra.comで入手できる。
関連論文リスト
- CLA: Latent Alignment for Online Continual Self-Supervised Learning [53.52783900926569]
オンラインCLの新しいSSL戦略であるContinuous Latent Alignment (CLA)を紹介する。
我々のCLAは、オンラインシナリオにおけるトレーニングプロセスの収束を早めることができ、同じ計算予算の下で最先端のアプローチより優れています。
また, 事前学習の初期段階において, CLA を事前訓練プロトコルとして使用すると, 完全な i.i.d. 事前訓練と比較して, 最終的な性能が向上することが判明した。
論文 参考訳(メタデータ) (2025-07-14T16:23:39Z) - Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning [11.50324946279326]
コントラスト言語-画像事前訓練モデル(CLIP)は、様々な下流タスクに強い能力を示す。
視覚言語事前学習モデルの微調整におけるモダリティギャップの変化を分析する。
クラス増分学習におけるCLIPの性能を向上する単純なMG-CLIPを提案する。
論文 参考訳(メタデータ) (2025-07-12T02:28:42Z) - Diffusion Guidance Is a Controllable Policy Improvement Operator [98.11511661904618]
CFGRLは教師付き学習の単純さで訓練されているが、データ内のポリシーをさらに改善することができる。
オフラインのRLタスクでは、信頼性の高いトレンドが観察されます -- ガイダンスの重み付けの増加によって、パフォーマンスが向上します。
論文 参考訳(メタデータ) (2025-05-29T14:06:50Z) - Parameter Efficient Continual Learning with Dynamic Low-Rank Adaptation [19.48677836920734]
連続学習(CL)におけるディープニューラルネットワークにとって、破滅的な忘れは依然として重要な課題である。
CLトレーニング中にLoRAコンポーネントの動的ランクアロケーションを必要とするリハーサルフリーなCLフレームワークであるPEARLを紹介する。
論文 参考訳(メタデータ) (2025-05-17T13:19:01Z) - Enhancing knowledge retention for continual learning with domain-specific adapters and features gating [4.637185817866919]
継続的な学習は、以前に取得した知識を保持しながら、連続したデータのストリームから学習するモデルに力を与える。
本稿では,視覚変換器の自己保持機構にアダプタを組み込むことにより,異なるドメインからのデータセットを逐次追加する場合の知識保持を向上させる手法を提案する。
論文 参考訳(メタデータ) (2025-04-11T15:20:08Z) - SPARC: Subspace-Aware Prompt Adaptation for Robust Continual Learning in LLMs [4.194295877935867]
大規模言語モデル(LLM)のための軽量連続学習フレームワークを提案する。
本手法はタスク・インクリメンタル・ドメイン・インクリメンタル・ラーニング・セットアップにおいて高い知識保持を実現する。
SuperGLUEベンチマークの実験では、PCAベースのプロンプトチューニングとLoRAが組み合わさって、完全知識保持を維持しながら精度を向上し、モデルのパラメータの1%しか利用していないことが示されている。
論文 参考訳(メタデータ) (2025-02-05T06:11:55Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
そこで我々は,AITP(Aligning Instruction Tuning with Pre-training)を提案する。
8つのベンチマークで3つの完全にオープンな大規模言語モデル(LLM)上で,AITPによる一貫したパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2025-01-16T08:27:40Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
継続的な学習設定では、モデルは以前の知識を保持することで新しいタスクの学習のバランスをとるのに苦労することが多い。
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
C-ADA (Continuous Adapter) という,RFCL タスクに対する超高速学習手法を提案する。
C-ADAは、CALの特定の重みを柔軟に拡張し、各タスクの新たな知識を学び、古い重みを凍結して以前の知識を保存する。
提案手法は,現状のSOTA(State-of-the-art)法よりも優れ,性能とトレーニング速度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-14T17:40:40Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
ドメインクラスのインクリメンタル学習は現実的だが、継続的な学習シナリオである。
これらの多様なタスクに対処するために、事前訓練されたビジョンランゲージモデル(VLM)を導入し、その強力な一般化性を実現する。
事前訓練されたVLMにエンコードされた知識は、新しいタスクに適応する際に妨げられ、固有のゼロショット能力を損なう。
既存の手法では、膨大なオーバーヘッドを必要とする余分なデータセットに知識蒸留でVLMをチューニングすることで、この問題に対処している。
我々は、事前学習した知識を保持できるDIKI(Distributed-Aware Interference-free Knowledge Integration)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T12:19:37Z) - What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
大規模なデータ不均衡は、Webスケールの視覚言語データセットの間に自然に存在する。
事前学習したCLIPは、教師付き学習と比較してデータ不均衡に顕著な堅牢性を示す。
CLIPの堅牢性と差別性は、より記述的な言語監督、より大きなデータスケール、より広いオープンワールドの概念によって改善される。
論文 参考訳(メタデータ) (2024-05-31T17:57:24Z) - Investigating Continual Pretraining in Large Language Models: Insights and Implications [9.660013084324817]
大規模言語モデル(LLM)における継続的な学習は、効率的で持続可能なトレーニング戦略の開発に焦点を当てた進化途上のドメインである。
我々は,LLMの事前学習データランドスケープの変化に対する適応性を測定するために,新しいベンチマークを導入する。
i) 継続事前学習は、この研究で研究された1.5Bモデルを継続的に改善し、ドメイン適応よりも優れていること、(ii) より大きなモデルは、同じコーパス上で継続的に事前訓練された場合、より小さなモデルよりもずっと複雑であること、(iii) より小さなモデルは、特に連続事前訓練に敏感であること、そして、学習と学習の双方において最も有意な割合を示すこと、など、いくつかの重要な知見が明らかになった。
論文 参考訳(メタデータ) (2024-02-27T10:47:24Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
本稿では,継続学習モデル(CL)が事前学習者に与える影響を幅広く研究する。
その結果, 微調整性能が著しく低下することなく, 表現の伝達品質が徐々に向上することがわかった。
本稿では,下流タスクの解法において,リッチなタスクジェネリック表現を保存できる新しい微調整方式GLobal Attention Discretization(GLAD)を提案する。
論文 参考訳(メタデータ) (2023-06-21T05:26:28Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) は、ある側面に対する感情の極性を決定することを目的としている。
事前トレーニングと下流ABSAデータセットの間には、常に深刻なドメインシフトが存在する。
我々は,バニラ・プレトレイン・ファインチューンパイプラインにアライメント事前訓練フレームワークを導入する。
論文 参考訳(メタデータ) (2021-10-26T04:03:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。