On the Feature Learning in Diffusion Models
- URL: http://arxiv.org/abs/2412.01021v1
- Date: Mon, 02 Dec 2024 00:41:25 GMT
- Title: On the Feature Learning in Diffusion Models
- Authors: Andi Han, Wei Huang, Yuan Cao, Difan Zou,
- Abstract summary: We propose a feature learning framework aimed at analyzing and comparing the training dynamics of diffusion models with those of traditional classification models.
Our theoretical analysis demonstrates that, under identical settings, diffusion models are encouraged to learn more balanced and comprehensive representations of the data.
In contrast, neural networks with a similar architecture trained for classification tend to prioritize learning specific patterns in the data.
- Score: 26.53807235141923
- License:
- Abstract: The predominant success of diffusion models in generative modeling has spurred significant interest in understanding their theoretical foundations. In this work, we propose a feature learning framework aimed at analyzing and comparing the training dynamics of diffusion models with those of traditional classification models. Our theoretical analysis demonstrates that, under identical settings, diffusion models, due to the denoising objective, are encouraged to learn more balanced and comprehensive representations of the data. In contrast, neural networks with a similar architecture trained for classification tend to prioritize learning specific patterns in the data, often focusing on easy-to-learn components. To support these theoretical insights, we conduct several experiments on both synthetic and real-world datasets, which empirically validate our findings and highlight the distinct feature learning dynamics in diffusion models compared to classification.
Related papers
- Dynamics of Concept Learning and Compositional Generalization [23.43600409313907]
We introduce a structured identity mapping (SIM) task, where a model is trained to learn the identity mapping on a Gaussian mixture with structurally organized centroids.
We mathematically analyze the learning dynamics of neural networks trained on this SIM task and show that, despite its simplicity, SIM's learning dynamics capture and help explain key empirical observations.
Our theory also offers several new insights -- e.g., we find a novel mechanism for non-monotonic learning dynamics of test loss in early phases of training.
arXiv Detail & Related papers (2024-10-10T18:58:29Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Diffusion Models and Representation Learning: A Survey [3.8861148837000856]
This survey explores the interplay between diffusion models and representation learning.
It provides an overview of diffusion models' essential aspects, including mathematical foundations.
Various approaches related to diffusion models and representation learning are detailed.
arXiv Detail & Related papers (2024-06-30T17:59:58Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - The Emergence of Reproducibility and Generalizability in Diffusion Models [10.188731323681575]
Given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs.
We show that diffusion models are learning distinct distributions affected by the training data size.
This valuable property generalizes to many variants of diffusion models, including those for conditional use, solving inverse problems, and model fine-tuning.
arXiv Detail & Related papers (2023-10-08T19:02:46Z) - On Memorization in Diffusion Models [44.031805633114985]
We show that memorization behaviors tend to occur on smaller-sized datasets.
We quantify the impact of the influential factors on these memorization behaviors in terms of effective model memorization (EMM)
Our study holds practical significance for diffusion model users and offers clues to theoretical research in deep generative models.
arXiv Detail & Related papers (2023-10-04T09:04:20Z) - A Theoretical Study of Inductive Biases in Contrastive Learning [32.98250585760665]
We provide the first theoretical analysis of self-supervised learning that incorporates the effect of inductive biases originating from the model class.
We show that when the model has limited capacity, contrastive representations would recover certain special clustering structures that are compatible with the model architecture.
arXiv Detail & Related papers (2022-11-27T01:53:29Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.