論文の概要: Quantization-Aware Imitation-Learning for Resource-Efficient Robotic Control
- arxiv url: http://arxiv.org/abs/2412.01034v1
- Date: Mon, 02 Dec 2024 01:33:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:31.719471
- Title: Quantization-Aware Imitation-Learning for Resource-Efficient Robotic Control
- Title(参考訳): 資源効率の良いロボット制御のための量子化学習
- Authors: Seongmin Park, Hyungmin Kim, Wonseok Jeon, Juyoung Yang, Byeongwook Jeon, Yoonseon Oh, Jungwook Choi,
- Abstract要約: 我々は,低ビット精度誤差に対するロバスト性を高めるために,パラメータを微調整するILベースのポリシーモデルのための新しい量子化フレームワークを提案する。
実エッジGPU上での4ビット重み量子化のためのロボット操作による評価は,我々のフレームワークが最大2.5倍の高速化と2.5倍の省エネを実現していることを示す。
これらの結果は、リソース制約のあるデバイスにILベースのポリシーモデルをデプロイする現実的な可能性を強調している。
- 参考スコア(独自算出の注目度): 11.365124223329582
- License:
- Abstract: Deep neural network (DNN)-based policy models like vision-language-action (VLA) models are transformative in automating complex decision-making across applications by interpreting multi-modal data. However, scaling these models greatly increases computational costs, which presents challenges in fields like robot manipulation and autonomous driving that require quick, accurate responses. To address the need for deployment on resource-limited hardware, we propose a new quantization framework for IL-based policy models that fine-tunes parameters to enhance robustness against low-bit precision errors during training, thereby maintaining efficiency and reliability under constrained conditions. Our evaluations with representative robot manipulation for 4-bit weight-quantization on a real edge GPU demonstrate that our framework achieves up to 2.5x speedup and 2.5x energy savings while preserving accuracy. For 4-bit weight and activation quantized self-driving models, the framework achieves up to 3.7x speedup and 3.1x energy saving on a low-end GPU. These results highlight the practical potential of deploying IL-based policy models on resource-constrained devices.
- Abstract(参考訳): 視覚言語アクション(VLA)モデルのようなディープニューラルネットワーク(DNN)ベースのポリシモデルは、マルチモーダルデータを解釈することで、アプリケーション間で複雑な意思決定を自動化する上で、変革的です。
しかし、これらのモデルのスケーリングは計算コストを大幅に増加させ、ロボット操作や、迅速かつ正確な応答を必要とする自律運転といった分野における課題を提示している。
リソース制限ハードウェアへの展開の必要性に対処するため,トレーニング中の低ビット精度誤差に対する堅牢性を向上し,制約条件下での効率性と信頼性を維持するため,ILベースのポリシーモデルのための新しい量子化フレームワークを提案する。
実エッジGPU上での4ビット重み量子化のための代表的ロボット操作による評価は,我々のフレームワークが精度を保ちながら,最大2.5倍の高速化と2.5倍の省エネを実現していることを示している。
4ビットの重量とアクティベーションの量子化自動運転モデルでは、このフレームワークはローエンドGPU上で最大3.7倍のスピードアップと3.1倍の省エネを達成する。
これらの結果は、リソース制約のあるデバイスにILベースのポリシーモデルをデプロイする現実的な可能性を強調している。
関連論文リスト
- Optimizing Small Language Models for In-Vehicle Function-Calling [4.148443557388842]
本稿では,小型言語モデル(SLM)をエッジデバイスとして車両内の機能呼び出しエージェントとして展開するための総合的アプローチを提案する。
SLMを利用することで、車両制御機構を簡素化し、ユーザエクスペリエンスを向上させる。
論文 参考訳(メタデータ) (2025-01-04T17:32:56Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - One-Step Diffusion Policy: Fast Visuomotor Policies via Diffusion Distillation [80.71541671907426]
OneStep Diffusion Policy (OneDP)は、事前訓練された拡散政策から知識を単一ステップのアクションジェネレータに蒸留する新しいアプローチである。
OneDPはロボット制御タスクの応答時間を著しく短縮する。
論文 参考訳(メタデータ) (2024-10-28T17:54:31Z) - Efficient Motion Prediction: A Lightweight & Accurate Trajectory Prediction Model With Fast Training and Inference Speed [56.27022390372502]
我々は,1つのGPU上で数時間のトレーニングをしながら,競争力の高いベンチマーク結果を実現する,新しい効率的な動き予測モデルを提案する。
その低推論レイテンシは、特に限られたコンピューティングリソースを持つ自律アプリケーションへのデプロイに適している。
論文 参考訳(メタデータ) (2024-09-24T14:58:27Z) - Tiny Reinforcement Learning for Quadruped Locomotion using Decision
Transformers [0.9217021281095907]
リソース制約のあるロボットプラットフォームは、低コストのハードウェア代替品を必要とするタスクに役立ちます。
本稿では,資源制約のあるロボットプラットフォーム上での模倣学習を実現する手法を提案する。
本手法は資源制約された四足歩行ロボットであるBittleの自然視運動を実現する。
論文 参考訳(メタデータ) (2024-02-20T18:10:39Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Quantized Distillation: Optimizing Driver Activity Recognition Models
for Resource-Constrained Environments [34.80538284957094]
本稿では,資源効率の高いドライバアクティビティ認識のための軽量フレームワークを提案する。
このフレームワークは、ビデオ分類のスピードに最適化されたニューラルネットワークである3D MobileNetを強化する。
モデルサイズを3倍に削減し、推論時間を1.4倍改善する。
論文 参考訳(メタデータ) (2023-11-10T10:07:07Z) - Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
より小型で正確なデバイスを求めると、Deep Learningモデルはデプロイするには重すぎる。
予測符号化理論と動的早期退避に基づく浅層双方向ネットワークを提案する。
我々は,CIFAR-10上の画像分類におけるVGG-16と同等の精度を,より少ないパラメータと少ない計算量で達成した。
論文 参考訳(メタデータ) (2023-09-05T08:00:01Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - A High-Performance Adaptive Quantization Approach for Edge CNN
Applications [0.225596179391365]
最近の畳み込みニューラルネットワーク(CNN)開発は、様々なアプリケーションに対する最先端のモデル精度を推し進めている。
精度の向上は、かなりのメモリ帯域幅とストレージ要求のコストが伴う。
本稿では,偏りのあるアクティベーションの問題を解決するための適応型高性能量子化法を提案する。
論文 参考訳(メタデータ) (2021-07-18T07:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。