論文の概要: A Hybrid Evolutionary Approach for Multi Robot Coordinated Planning at Intersections
- arxiv url: http://arxiv.org/abs/2412.01082v1
- Date: Mon, 02 Dec 2024 03:40:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:47.283625
- Title: A Hybrid Evolutionary Approach for Multi Robot Coordinated Planning at Intersections
- Title(参考訳): 交差点における複数ロボット協調計画のハイブリッド進化的アプローチ
- Authors: Victor Parque,
- Abstract要約: 交差点での協調型マルチロボット運動計画は、道路、工場、倉庫における安全な移動の鍵となる。
本稿では,パラメトリック格子構造と離散的RRTを用いた新しい進化的アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Coordinated multi-robot motion planning at intersections is key for safe mobility in roads, factories and warehouses. The rapidly exploring random tree (RRT) algorithms are popular in multi-robot motion planning. However, generating the graph configuration space and searching in the composite tensor configuration space is computationally expensive for large number of sample points. In this paper, we propose a new evolutionary-based algorithm using a parametric lattice-based configuration and the discrete-based RRT for collision-free multi-robot planning at intersections. Our computational experiments using complex planning intersection scenarios have shown the feasibility and the superiority of the proposed algorithm compared to seven other related approaches. Our results offer new sampling and representation mechanisms to render optimization-based approaches for multi-robot navigation.
- Abstract(参考訳): 交差点での協調型マルチロボット運動計画は、道路、工場、倉庫における安全な移動の鍵となる。
高速探索型ランダムツリー(RRT)アルゴリズムは、マルチロボットモーションプランニングで人気がある。
しかし, グラフ構成空間の生成と合成テンソル構成空間の探索は, 多数のサンプル点に対して計算コストがかかる。
本稿では,パラメトリック格子構造と離散的RRTを用いた新しい進化的アルゴリズムを提案する。
複雑な計画交叉シナリオを用いた計算実験により,他の7つの手法と比較して,提案アルゴリズムの有効性と優位性を示した。
本研究は,マルチロボットナビゲーションのための最適化に基づくアプローチをレンダリングするための新しいサンプリング機構と表現機構を提供する。
関連論文リスト
- Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(SMD)は、制約付き最適化を拡散サンプリングプロセスに統合し、運動学的に実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
複雑な無線環境における経路計画を実現するために,視覚言語モデル(VLM)を用いた新しい手法を提案する。
この目的のために、実世界の無線レイトレーシングデータを用いたデジタルツインからの洞察を探索する。
その結果, SCoTT はDP-WA* と比較して非常に近い平均経路ゲインを実現し, 同時に一貫した経路長が得られることがわかった。
論文 参考訳(メタデータ) (2024-11-27T10:45:49Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences [20.879194337982803]
MAPF(Multi-Agent Path-Finding)アルゴリズムは、離散的な2Dドメインで保証され、厳密な保証を提供する。
本稿では,その反復的かつ漸進的な性質を活用して,競合に基づく探索アルゴリズムを高速化する手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T20:31:07Z) - Multi-agent Path Finding for Cooperative Autonomous Driving [8.8305853192334]
我々は,既存のアルゴリズムを著しく上回る最適かつ完全なアルゴリズムであるオーダーベース検索をKinematics Arrival Time Scheduling (OBS-KATS) により考案した。
当社の作業は、同じようなスケールのトラフィックや、有向車線を備えたマルチロボットシナリオに直接適用可能です。
論文 参考訳(メタデータ) (2024-02-01T04:39:15Z) - A Novel Knowledge-Based Genetic Algorithm for Robot Path Planning in
Complex Environments [3.318708963153893]
提案する遺伝的アルゴリズムは,ロボット経路計画の領域知識を特殊演算子に組み込む。
提案アルゴリズムは, 静的・動的複合環境において, 最適に近いロボット経路を求めることができる。
論文 参考訳(メタデータ) (2022-09-03T19:13:16Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
目的は,ロボットの軌道とNOMA復号命令を協調的に最適化することで,マルチロボットシステムにおける全軌道の総和率を最大化することである。
ARIMAモデルとDouble Deep Q-network (D$3$QN)アルゴリズムを組み合わせたML方式を提案する。
論文 参考訳(メタデータ) (2022-05-03T17:14:47Z) - Distributing Collaborative Multi-Robot Planning with Gaussian Belief
Propagation [13.65857209749568]
本稿では、動的制約と衝突制約を定義する汎用因子グラフに基づく、新しい純粋分散手法を実証する。
本手法は, 道路交通シミュレーションシナリオにおいて, 極めて高性能な協調計画を可能にすることを示す。
論文 参考訳(メタデータ) (2022-03-22T11:13:36Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
本稿では,異なるロボットのタスクが時間的・優先的な制約に強く結びついているミッションに対して,タスク割り当てとスケジューリングを行うアルゴリズムを提案する。
マルチロボットシステムによって維持される温室の実用ユースケースへの計画手順の適用。
論文 参考訳(メタデータ) (2021-09-07T13:44:28Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。